CF is the specific heat at constant pressure for the 2as
C, is the specific heat at constant volume for the gas

5—2~— Changes in Fundamental Propertics of Perfect Gas Undergoing a Reversible
Polytropic or Isentropic Flow Process

The relation between the potential head z, the pressure P, the density 0 and the
velocity C of a flowing non-viscous fluid was given by equation (3.44) as follows:

qdz+%E +odoc o= 0

If there is no change in the potential head z, this equation reduces to:

%E +cde= 0 (5.12)

From equation (5.11):
AP = R(cd T + T 4 p) (5.13)
Equations (5.12) and (5.13) combined, give;

RodD | o, EELO! 4 jeiadie i (5.14)
ju] pa

Substituting from equation (5.4) into (5.14) and integrating we get:

2
BT + % FOEE CT = constant (5.15)

which may be reduced to the form;

i — 1 T + = = canstant (5.16)

2
nR 1 ng 2

= AU el = L (517

which may be reduced to the form;
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Eguation (5.4) also gives;

T o, l=n o n=1
"_["_2 = i _l i = [ —2 !
1 2 P1
From which into (5.18) we get;
_ 2 2 L
P2 g e EH i Shekr D" "R
. e — —— i}
Ry L 2
and equation (5.5) gives;
1-n n-1
33 = Ei g 3 EE g
T, P, - E.
From which into (5.18) we get;
2 z n
{ Eg o= [ 1 - n-1 EE e jp-l
FL nRTl 2

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

If the process undergone by the gas is isentropic, eguations (5.17), (5.18), (5.20) and

(5.22) to be the following forms respectively;

2 2
C C
TR 5 SR U -2
 seydd Ty ¥ =5 \ oy 4Ty *og
2 2
Ts . Frogoms ool tcz-cl -
T, "rRTl 5
3.2 1
Raig o ox-1 o ! s
Tt - Sl ) ]
1 1 2
2 2 T
EE = i { E;_:Eiﬁ } ]T_l
= ™
Pl TR-l 3

(5.23)

(5.24)

(5.25)

(5.26)



EXAMPLE 5.1

Air flowing through a heat exchanger has its pressure reduced from 200 kN/m? to
195 kN/m2. Its velocity and temperature at the inlet to the heat exchanger are 100
m,/s and 35°C respectively. Assuming air to be a perfect gas with specific gas cons-
tant R=0.287 kl/ke.K and the polytropic expansion index of the process is 1.6,
calculate the velocity and temperature of the air at the exit of the heat exchanger.

Solution
o n-1 2 2
E:¢EJH-=1_ = i'zz—'ulﬁ
T, Py nRT, 5
.].:.:.'5_:'1
185 & TLLE . _ | - (1.8<1] (e.llc 2]
TR = 1.6%287%308%2 Ly =%y
m 9?533‘3?5 N R SSR S
' d 282867 R B
ey - 0.6 z_ .2
0.,9%055=1 = TESAET | ':2 ':l }
N2 .02 _ =0.00945 x 282867 _ ..,
- c, _CI ] = e e 5454 .4
o 2 . ,
C," =2, + 4454.9 = 10000 + 4454.8
= 14454.8
C, = 120.2 m/s

e
Il
=
gie]
o
]
o
wn
L |
Il

0,99055 x 308

5—23— The Speed of Propagation of Weak Pressure Wave in Gas {Acoustic Speed)

An object suddenly introduced into a gas stream would cause various changes in
pressure around its profile. Such pressure changes react on the {luid continuum
around the object.
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A pressure disturbance of this kind transmitting itself further and further away
from the origin affects progressively greater amounts of the fluid and in conse-
guence the pressure wave propagating away from the source becomes progressively
weaker. By the time the pressure disturbance makes itself felt at a great distance
from its origin, the pressure change has redoced to a very small value 5§ P. The
speed at which the weak pressure wave propagates relative to the fluid is denoted by
“a’, Since sound is believed to propagate in gases in this manner,this speed is
known as “‘the speed of sound” or “‘the acoustic speed’,

Now let us consider the occurance of such pressure in a constant area stream tube
Fig. {5.1)

e

P R S R - | e I__Jf_"'l__

S— |_,,p.—g$ ds I G | | |

i | [ E

— w0 lcog |— o+ 23 dg a | g &

=i o 1 I I | |

e | i E.—g% ds 1 i Boowr il

S | —= [ [ I
e i Sl e N I L.a = I__‘_J._

Fig. 5.1 Pressure wave in o constant area stream tube

If the origin of a pressure disturbance is at 0= 0, the pressure wave would travel in
all direction at a speed *‘a". Assuming that the flow is travelling with a velocity *°C**
in the direction shown in Fig. (5.1), then the pressure wave would be travelling ups-
tream at a velocity **C-a’".

Mow considering the pressure wave itself to be a control volume then at its front
the fluid has not yet felt its effect and would be crossing the front boundary of the
wave at a velocity C, a pressure P and a density ©. At the rear boundary of the wave
the fhuid after being affected by the pressure wave would assume new conditions
different from those at the inlet 1o the wave, that is a velocity; < + ;g da,

a pressure P+ gz— dsoand a density; o+ :]i dz. The propagation of the press
ure wave assumed to be steady renders the time lacior 1o be of no effect,

Applying continuity and momentum rules to the wave as a control volume, bea-
ring in mind that the wave neither stores nor gives away mass, we obiain;

i} by continuity
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ap
3

t
el

{C-(C-a))o.a=[(C + %% ds) - (C-alllp +

i

(C-C+a)p =(C + %% ds - Ctra)ip + == ds)

or

Da

Pa + p == ds + a

55}
kel
wr
g |
(=
7]
]
| al
=
FuL
L7

L=
[F]

o]
< dn

+
3|
w
L]
ol

neglecting second order terms Lhis yields;
o dc = =58, ES o

i} and from momentum considerations we have,

'"Time rat of Time rate of
*hange of momeT Eum
amentum of = influx into
ntrol veluma the control wvolume
y direction in direction
xe *
¥ ¥
or or
z z

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

so that;

ey
dt

Time rate of
momentum
efflux out of
cantrol volume
in direction

i
vl
o
zi

195

Sum of external

forces {including
forces induced by
control wvolume like
static pressures...etc)
on control volume

in direction x
Y
or
z
c + TF
0o X0 rx
Yo W
or ar
42 (5.32)



Considering one direction for the above analysis the above equation (5.32) becomes:

dc ; . o
® am : ot < —
moge HCpige 1T oIRNpE fAm. oo » (5.33)

For the pressure wave m is constant, and C, =a also constant. The speed of sound
in the model given would not be a function of time. In other words if the source
keeps emitting the pressure waves, the sound would travel at a particular pattern in
the medium. The speed of sound may differ from one place to the other in the
medium but it would not be a function of time.

Therefore
ac )
sk oy : J}‘T =0
dt t
Fam - e 2 34
Jdmi T pPA[C-(C=-a)]C pa AC (5.34)
fam, o = o 3 Eoagcuiesaipe #0938 asvRies 28w
o ®o Ts a5 J=s
= afa + g Az} ip + ip ds) (= * ic da)
- ds - s !
=uaAc+acAg—gds+ nc.ﬁ.g—gds+aczxg—:ds
(5.35)
2 _ ip = x &D 5.36)
IFx A -{p + T ds] A A Te ds (
substituting these quantities in equation (5.33) we get
Ip s
0 = pahc - pahc = ach 35 ds - poh i ds
- apa $ as - & B 45 (5.37)
s that;
ac do+ pc 3¢ + ag d¢ o+ dp =0 f5.38}

Substituting from equation (5.31) into equation (5.38) we get;
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ac dp = . ag¢ Ip —.@a dp.+ &p =0 (5.39)
o Fatoe)
L dp = a. 4p
{5.40)
2 _ap
ar i (5.41)

Equation (5.41} while giving a value for the speed of sound in the Tuid in terms of
its pressure and density, indicates that the speed of sound in a fluid is not a function
of the fluids gwn veloeity; never the bess it may be indirectly so particularly when the
density of the fluid changes according (o changes in the velocity of the fluid (zee
equation 5.23)

It is essential to note that no restrictions have been made in the above analyvsis which
means that the conclusion made in equation (3.41) so far applies to any fluid.

However, the speed of sound is relatively high, and the magnitude of time in
which a fluid mass is under the effect of the pressure wave is extremely short so that
any cxchange of heat berween their mass and its surroundings during this inlinite-
simal time would be inconceivable, The process is therefore considered to be adia-
hatie, The pressure wave taking the form of an clastic control volume makes it also
fessible to assume that the process is reversible,

Thus the propagation of sound in gases may be assumed Isentropic, for which
equation (5.7) gives;

- 3 5§
E=% ¢ (5.42)
that is; P is a function of o only and equation (5.41) may now be written in the form

P 2 (5.43)

and from equation (5.41) we have;

d -

P~ vk, ol (5.44)
and since

v LB

Hy .? = ﬁ
therefore

-1
dp _ xPa’ = &£ (5.45)
dp oy ¥



Mow equations (5.43) and (5.45) vield.,

af o p¥ (5.46)

from which into equation {5.46) we ohtain;
2
& = TET {5'4T:]
or

o

- 5.4)

values for Roand ¥ for common gases are given in Table 5.1

Table 5.1 Gas constant, R, and specific heat ratio, »
al 298.15 K for common gases”

chemical R

Gas symbal J/Kg. K N
Air 287.08 1.4
Argon -8 208.15 1.6854
Carbon monoxide CO 296 .83 1.398
Carbon dioxide C03 188.92 1.288
Helium He 2078.2 1.659
Hydrogen Ha 4124.2 1.405
Methane CHa 518.25 1.304
Nitrogen M2 29604 1.4
Oxygen Q2 259.82 1.395
Water HyO 461.5 1.329

" T;:::::f:o; -ZLI::.r-:r\\'_. M. I and Hoffman, JD._GaS_ D}'.szic:a, John Wiley & Sons [nc., 1975,

EXAMPLES.2

Calculate the speed of sound in air at - 350°C,0°C 50°Cand 100°C

Data of the problem
* Fluid = air
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Requirgments
* Speed of sound at —50°C,0°C,50°Cand 100°C

Solution
Forair = = 287 J/kqg.®
for T< 600 K

1
—
4
Lo

T

Substituting the above values into equation (5.48) we get

a =Y BT =V 1.4 x 2087x T = 20.045T

Substituting values of temperature in Kelvin in this equation we get the require-
ments as tabulated below;

: a
£.%c T.K n/s
=50 223  299.13
0 273 3F3i.2
50 323 380.3
100 3731 387.1

5—4— Evaluation of Fundamental Properties of a Perfect Gas at Stagnation

Quite often the measurement of the velocity of a compressible fluid involves brin-
ging a streamline of this fluid to stagnation and measuring one or more if its fun-
damental properties. The process of stagnation takes very shorl time so that it may
be considered isentropic,

The equations (5.24), (5.25) and (5.26), if the fluid at point 2 is brought to sta-

gnation i.e. C,=0 and the quantity Y RT, is substituted by a?l- these equations take
the form;

P 2
T py oozt By (5.49)
T 2 )
1 a
1
o =1 1 1fvy=1 3.5
== [ 1+ 5= ]
o1 N
1
2
e gy oy Tl Syl
B Z alz _ (5.51)
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where “90°* refers to stagnation property.

5 — 35— Subsonic and Supersonic Flows

From equation (3.23) we have;

2 2
1
I RT. + - hi

2 y—1

]
Wk

Bl +
2

.

Using equation (5.11) and substituting

|-
il
[n°

RT. and = RT
1 1

o™
L+

[
Fud

in equation (5.52) we get;

T oo, 7-1
hawve;

2 ]
-~ IE A ]

a S 5 AN ﬂo o
from which into equation (3.54) we obtain:
2 3 3
i

|

(5.52)

(5.53)

(5.54)

If “*a'" is the speed of sound at pressure “‘P*" and “'a,’" is that at 'P.7", then we

(5.55)

(5.56)

which shows that **a" has the maximum value *a " when “C* is equal to zero and
that ““C"" has a maximum value “C_,."" when “a’’ is equal to zere in which case

Cipay would be given as;
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The critical speed occurs when sound speed a, and fluid velocity C. are equal and
therefore from equation (5.54) we have;

2 2 -2 ¢

s A (5.58)

that is;

< a2 L (5.59)
or
a, =€, =a V2 (5.60)

Fig. 5.2 Subsonic and

- 4 i o? supersonte flows
2 Tmax ~ v-1 ¥
(5.61)
that is
. d 32 - C2
Lo IS CoTmax (5.62)

Equation (5.62) gives a family of straight lines as shown in Fig. (5.2). Each of these
lines indicate that with a specified sum of kinetic and pressure energy, the velocity of
the fluid along a particular streamline in a fluid contimium can only reach a
maximum given by C . thal is, C< Cinay 2nd that the speed of sound at any point
along this streamiing can only reach a maximum given by a, 50 that a=xa .

Now, the straight line C2—a?=0, gives the locus of the critical speeds: for
example it cuts the line AB at the point F (C2, al) where C, = a,.
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The line OF divides the graph into two regions each corresponding to a physically

different regime,

The ratio (C/a) is known as “Mach number’ and denoted by M so that;

M=Crla

(5.63)

Then at any point in the region below line OF,we have C-<C, =1, <a so that M<I1,

provided that C<7a. A flow for which M<I1 is called subsonic.

At any poinl in the region above line OF, we have C>C, =a, >4, o that M>1

and the flow is then said to be supersonic.

From equation (3.56) we now have;

2
ac' — 1 -+ ﬂ E_
Tt z 7
a a
or
d-z u] _l
I=logd x B = o
1+ 5— M = az l = ]
p. I=1 T
= =7 = 2
- P - T

Mow fundamental stagnation properties can be expressed as;

=3
i
™
e
-
+*
i

Where M= 1, equations (5.66), (3.67) and (5.68) take the form

-

2
y+1

-.'Il

o

A

2 =
= g

LE
»
=

‘._'t-l
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(5.66)
{5.67)

(5.68)

(5.69)

(5.70)



5 ¥
i SRR A (5.71)

The relations between the isentropic flow properties and the Mach number as given
by the above equations (5.66 —5.71) are presented graphically in Fig, (5.3) for air
(Y= 1.4)

1.0
Nk
pie SN
NS
s ST T
2 A \ T
PEEEREL G EEELL Y
_i \\\\ | n
[ N | .E i
0.2 ] \:ﬁ?& |
0 I [P T e S
0 0.4 0.8 2 1.6 20 24 e

Mach number M

Fig. 5.3 Isentropic flow pressure, density and temperature as a function of Mach
number (for air, v = 1.4)

EXAMPLE 5.3

A gas flow through épas:;agu with & speed of 800 m/s. [ts local static temperature
is 1527°C, its specific heat ratio = 1.25 and the gas constant R =332.8 J/ke K.
Calculate the Mach number,

Data of the problem
# Fluid is a gas

*C o= B00m/s

T = 1257°C = 1800 K
* =125

*R = 3228 I/'kpg K

Requirements
* Mach number M,
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Solution
Eguation (5.48) gives the acoustic speed as

a = ¥YYRT
Thus,

a = ¥1.25 x 322.8 x 1800 = B852.2 m's

Equation (5.63) defines Mach number as;
M = Cla

.:"[ = 3 0.9387

3—6— Range of Compressibility
From equation {5.68) we have;

s
2

g osan el o CHET
i == M)

Expanding this by the binomial theorem;

m

. . nin=1% z
[i.2. {1+x) =1 + nx + — 5T

nin-1)in-2} 3.

S WH el

wi gel;

o ¥ 2 ¥ 4 ¥, 6
T = 1+ 5 M-+ 1 M+ i Mo (5'?2}

from which the ratio of the third term to the second term in the right hand expan-
sion s
& Laig
i.e. iz
Mitho kel {3 azl

1
(3

so that even when the speed C is equal to half the speed of sound this ratio is 1/16.
Thus it appears that we may to a good approximation neglect the third term unless
“C" s a considerable function of the speed of sound. Bernoulli equation for air (for
example) would stll take the form;

(5.73)

t‘J|-nh‘i



which means that air may be treated as incompressible within a very considerable
range of speeds. In particular for air speeds of up to 430 km/hr the error in speed
measurements made by the use of a pitot tube will be about two percent,

5—7— Effects of Area Variation

From Bernoulli's equation when potential head Z is fixed equation (5.12) give;

ap

r3 I B
that 15
2oy
dp = -p Cde = -2 C° = (5.74)
Continuity equation (3.16) gives,
PC A = constant
In logarithmic form this gives; .
logg + log C + log A = constant (3.75)
In a derivative form this equation gives
do , c& da | (5.76)
ST Ry g BN

Equations (5.74) and (5.76) give

b 3
dp = :..,[.- { o A i

N, if the density change is small (that is, the {luid is incompressible) then dp = 0
and we get;

dp = pCz %;_ {5.78)

But we have p © A = constant, and since p is constant in this case, it follows thart,
C A = constant, say k,so that;

c= 3
that is
2 Kz
cho= —=
I
Thus
ar = pr° B (5.79)
P



Henee, if area A is increasing then dA is positive and dP must be positive, that is
pressure increases with area and vice versa.

However as the velocity becomes considerably large, density (particularly for
gases) cannot be considerad constant and density changes must be taken into consi-
deration.

However, from equation (5.43) we have;

ap = oc? ( 8, 4 dh (5.80)
- =
that is
s = :
dp = E .;éig' + _____,:uCAdA = .”:2 4dp + :\Cz i
4 F)
or
(1-4%) ap = pc® 32 (5.81)
s0 that
2
aC dAa
aBum: e (5.82)

The density change may now be given as;

i
dg gy of 1 Sa
dp = = = %  ——— == g
s 4% (1-M%] A (2:82)
or
e, 0 584
o |:l"r"|.2:| =X I::j' }
Equations (5.76) and (5.84) now give:
dc,_dp _an _ M g _aa (5.85)
c o a (1-m2y 2 N
Hence,
de _ . _ 1 an
: A (556
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The three equations (5.82), (5.84) and (5.86) express the variation with area of the
pressure, density and velocity respectively. These equations are represented sche-
matically in Fig. (5.4).

A

I nC {wpuﬁ'ﬂniﬂ

1ingp {Subsﬂnic-}

p.lnp , and In ¢

] In A

Fig. 5.4 Effects of area variation in compressible flow

For subsonic flow (M<(1), Fig. (5.4) shows thart;
i) The pressure increases with an area increase.
ii) The density increases with an arca increase.
iii) The velocity decreases with an area increase.

For supersionic flow (M>=1), Fig. (3.4) shows that;
i} The pressure decreases with an area increase.
ii) The density decreases with an area increase.
iif) The velocity increases with an area increase.
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NMOZZLES

p decresses

¢ IMCreases

M=1

% R | M= M=1

M =1

Fig. 5.53a (Mozzles)

DIFFUSERS,;
P increases
T
C decreases
M =1 Mza=1 'ﬁ' M =1 M=1
=

Fig. 5.5b  (Diffusers)

Fig. 5.5 Effects of area change in subsonic and supersonic flow
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For flow at sonic speeds (M= 1) the three ;quations {5.82), (5.84) and (5.86) show
that;

y  da _ds _ da 2
PR il (a8

Thus the area may be either a maxitnum or a minimum. Fig. (5.4) shows that at
M=1 it must be a minimum.

ii)As the sonic conditions approached {from either side) the pressure changes (and
also density changes) become very large for even a small area change.
i) Combining equations (5.84) and (5.36) vields;
dp _ _ 42 éc
= 5 A = {5.88)
Thus near sonic velocities the change in density and the change in velocity will
compensate,

The use of Lthe three equations (3.82), (5.84) and (5.88) in the design of nozzles
and diffusers is quite significant.

A nozele 15 a device in which we gain a velocity increase at the expense of pressure
(pressure decrease). To accomplish this, in subsonic flow the nozzle area must
decrease, and in supersonic flow the area must increase.

A diffuser is a device in which we gain a pressure increase at the expense of velo-
city {velocity decrease). This may be accomplished in subsonic flow by making the
diffuserdiverges, and in supersonic flow by making the difTuser converges.

5—8— Nozzle Design

Consider the nozzle shown in Fig, (5.6). The continuity equation for this nozzle
shape states that

PCA = p, Ci A (5.89)
fe:
i) Paly F s Cy
R WSy (:50)

comsider the ratiop ./ p which can be written using Eqgs. (5.67) and (5.70), in the fol-
lowing form

T

(=)
L3

(5.91)

=

=|
*
ol
%)
-
1
—
L]
e
£
[
'



Consider the ratio C./C and remember that

C = = £ T
C = "'!"R-*

]
I

2
o
=
=,
-
Al
-

Ciy L R 5 L
= s N T (5.92)

i Ma H

Substituting into Eq. (2.92) from Eqgs. (5.66) and {3.69) 1o get the ratio C,./C as fol-
lows

{3

’ ol 2 M2

[ =5 LW 5 M2y (5.93)

i

Substitution from Egs. (5.91) and (5.93) into Eq. (3.90) gives

ook i o TEE o2y TR (5.94)

P
¥+1

!:ﬂ'

=i

=

>

This ratio is plotted in Fig. (5.7},

=
—4— E O
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-
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Fr,
L R R R

‘ﬂ‘
1, H
® P

Fig. 5.6 Flow from a reservoir through

a convergent-diversent nozzle 2 .
gent-divergent nozzle Fig. 5.7 Area ratio versus

Mach number

To design a nozzle with the following conditions and reguirements
— stagnation conditions P, p_ and T
— mass flow rate m
— exit pressure e
the following steps are recommended
1 — Caleulate the throat conditions from Egs. (5.69), (5.70) and (5.71) as follows
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= 2 5.95
T FOTL A e (5.95)
’ liv=1
2 396
o B N e (5.96)
2 l'l".‘hl""].
By =R ) | (5.97)
Also Py can be calculated from equation of state, 1.2,
P.o= BLRT,
2— Calculate the velocity at the throat using the following relation
. = a, =/ yRT, (5.98)
3~ The throat area is calculated from the continuity equation
m = o, C, A, (5.99)

4—  Use Egs. (5.66), (5.67) and (5.68) and the exit pressure to caleulated M, 0,
and T, are follows

=] =yiy=1 :

o als gl 2 (5.100)
= e

e Tl e b

il o M ) (5.101)
hC K gl 5.102
T = (Svkdes B (5.102)

p,and T, can be calculated from equation of state and relation of isentropic flow
Process,
3~ Calculate the velocity at exit from the relation

Co

_ Pg Fa
AY—L PR = =) (5.103)

(=1 =
ar from

G =Mds =M. dRRTL

e e e (= (5.104)
6— Find the exit area from the continuity consideration
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e e e (5.105)

Hence the dimensions of the nozzle at exit area fixed.

7 — If the uniformity of flow at exit is not a necessity, and the nezzle reaction is
the goal, then one can state that the nozzle performance is not very sensitive to the
geometry chosen. The geometry of the nozzle is generally chosen for reasons of ease

of manufacture. The convergent part of the nozzle is often much shorter than the
divergent part. A simple design is shown in Fig. (5.8),

B w30 - 48
B4 718

Fig. 5.8 Simple design of nozzle for which uniformity af flow at exit is not a Hecessily

8 — If the inlet radius is fixed from the combustion chamber considerations, then
a recomended shape is shown in Fig. (5.9)

A= 38 - o8
%n ‘IS.
¥ O~ 2R < 100
0, - —— O

Fig. 5.9 Nozzle design for which the inlet radius is fived

9~ For bigger pressure ratios P/P,, the nozzle shall be quite long and heavy if
the above proportions are used. 1t appears desirable to reduce the length by;

— first to expand the flow more quickly from the sonic conditions at the throat,

— then to turn or straighten it in the axial direction,

A sketch of a proposed configuration is given in Fig. (5.10)
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Fig. 5.10 Proposed configuration for nozzle with bigger pressure ratio PP,

EXAMPLE 5.4

Air is to flow through a convergeni-divergent nozzle at 1.2 kgss from a large
reservoir in which the temperature is 20%c. At the nozzle exit the pressure is to he 14
k.Pa and the Mach number 2.8, Assuming isentropic flow, determine the throat and
axir areas of the noezle, Consider B = 287 J/ke, K, Y = 1.4,

Problem Description

Adr
m= 12 kg,-'h
T, =20

Data of the Problem

L !1:1= 1.2 kais
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* T. = 20%c = 393 °k
o
* P, = 14 kPa = 14000 Pa
¥ M_ = 2.8
e
s R = 287 J/kg. K
* ¥y = 1.4

Requirements
* the throat area, A7
* Lhe exil area, Ac

Solution
The conservation of mass siates that

T;l = % nE g — e} F-9 v

but
vE = a® (I

therefore from Eqgs. (I) and (1)

&
AE = T I:iII}

N s L (TV)

B
o TS -1
EE = [ 1+ 521 M2
e a
5 =B
= 1+ 0.2 (2.:)%
= 27,14 (V)

Substitute from Requirements by P, to get
Po=2724 % 14 % 10° = 3.8 x 10°P

il

Get the stagnation density, @, from the equation of state as follows
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(=]
o =
o R To
5
" J.8x10 ~ . 3 (v
= 357 x 293 - 4.32 kg/m
Use Eq. (5.40) to calculate the density of exit flow, i.e.
4] o -1/y=1
= = |14 1 21 M2
L‘JO =
3 -2.5
= [ L # 0L.2 2L
= {.0948 I:VII}
Substitute from Eq. (VI) instead of £, to get @, i.e.
o = 0.428 kg/m°
@ : 2 (VILI)

Get the exit velocity from the definition of Mach number Eg. (5.12), and the
temperature-ratio as a function of Mach number, Eq. (5.39), as follows

H& = [.-[e ae {IX:I
=M, . /YR
and
T
& -1
T = Y=l 2
TD [ 1 + 3 ME ]
5 1
= [ 1+ 0,2(2.8)°)
= 0.3894
ie.
T, = 1lla.1 K
Substitution into Eqg. (VI gives
Vo, = 2.8 ¥1.4 = 287 % 1l4.1 ()

= 509.5
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Mow substitute from Eqs, (VII) and (X) inta Eq. (IV).
to caleulate A, i.e.

1,2 ~ -3 2
0.428 % 599.5 - 1-88xl0 m (XI)

To conclude A°, see Eq. (1), it needs to calculate o and a® as follows

getting p*

Use BEeg. (5.52), i.e,

3 1iv-1
p¥ = P { o 1
3 1/0.4
= 4.52 { )
= 2.866 kg/m° (XIT)
getling a”
Use Eqs. (5.117 and {5.51) as follows
as. (5.51) s
a* =" /YRT*
and
i T
T, 7+l
2 (XIV)
= 1.4+ = 0.833
ie,
T* = 293 x 0.8313 = 244.17 °k (}("J}
substitute from Eqg. (XV) into Eq. (XIII) to get
a* = v 1.4 x 2B7 x 244.17
= 313.22 mSs [Xvn

Substitution from Eqs. (XII} and (XVT) into Eq. (1) gives

219



o
m

p* a*

1.2
T Z4BeR x IL3I.22

= L.337 & wtY wd (XVID)

As a check, from Eqgs. (XI) and (XVT)

3.5 (XVIIL)

e
]

and also use Eqg. (5.50) to get the same area ratio

A 2 13
& 1 9+ M
R I—?i]
o ol R EEE 2
2.8 T8 = |
= 3,5 (XIX)

From Egs. (XVII) and (XIX), the answer is correct.

PROBLEMS ON CHAPTER FIVE

Problems on Sections 5— 1t 5-5
5.1. A gas that obeys the law PvY = constant flows along a pipe. Prove that,

gl g
£ ‘r_—% P
constant for this process where; C is the velocity of the gas, P and © are its press-
wre and mass density respectively, and Y is the specific heat ratio of the gas.

5.2. The velocity and temperature at a point 10 an isentropic flow of helium are
113 mss and 95°C, respectively. Predict the temperature on the same streamline
where the velocity is 190 m/s. What is the ratio between the pressure at the two
points. Consider C,=5.223 kl/kg. K for helium.

5.3. A fluid for which PvY= constant, flows through a thin pipe leading out of a
large closed vessel in which the pressure is m times the atmospheric pressure P
Show that the speed of efflux is given by
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=1 p "Lor
@, being the density of the fluid at atmospheric pressure Fi

5.4, Show that Tor air the stagnation temperature-rise in degree Kelvin is
approximately five times the sguare of the speed in hundreds of meters per second,
ie. AT= 5 (C/100)% (Note that for airy = 1.4and R = 287 J kg K.

5.5. The speed of reentry vehicle at an altitude of 9 km was 1000 m/s. Calculate
the Mach number and the stagnation temperalure, Consider T = 229.5 K.

5.6. Calculate the Mach number of an object travelling at 350 m/s in an envi-
ronment of air at 232 K. Estimate also the corresponding stagnation temperature.

5.7. An airplane flies at 950 km/h at an altitude where the air temperature is
224.3 K, Estimate the temperature near the stagnation point on the fuselage.

5.8. Anairplane is flying al a speed of 215 m/s at an altitude of 500 m, where the
temperature is 20°C. The plane climbs to 15 km, where the temperature is = 56°C
and levels off ar a speed of 311 m/s. Calculate the Mach number of flight in hoth
Cases,

5.9. Air flows from a reservoir at 60°C, 700 kN/m?. Assume isentropic flow,
calculate the velocity, temperature, pressure and density at a section where M= (.6,

5.100 If the difference between static and stagnation pressure o standard air
(P=101.3 kPa; T=15"C) is 67 cm of mercury compute the air velocity assuming
a) the air is ingompressible,
b} the air is compressible,

S.10. A pitot static tube is inserted into the test section of a subsonic wind tunnel,
It indicates a static pressure of 72 kN/m? while the difference between stagnation
and static pressure is shown as 14 cm of mercury. The barometric pressure is 75.2
cm of mercury and the stagnation temperature is 38°C. Calculate the Mach number
and the air velocity.

5.12. Products of combustion leave the nozzle of a rocket engine with a Mach
number of 4. The pressure at this point is 65kN/m?, The specific heat ratio for the
combustion products is 1.3. What is the nozzle inlet stagnation pressure for isen-
tropic flow? What are the ratios of static to stagnation temperature and static to
stagnation density?

5.13. Find the mass of air flow per second through 10 em? of area if the air is
supplied {rom a tank where the pressure 1s maintained at 600 kN/m® and the tem-
perature is 100°C and the Mach number varies as below:

a) 0.5, by0.g, ) 1.0,d) 1.5, ) 2:0.
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5.14. An aeroplane is flying at a speed of 185 m/s at a height where the air pres-
sure 15 30 kN/m? and the air temperature is 228 K.

What pressure will be developed between its pitot and static tubes? Give two
answers, one neglecting compressibility and the other taking it into account.

Problems on Sections 5 -6t 5-8

5.15. Anideal diffuser has air entering it with a Mach number 0.70.The area ratio
of this diffuser is 2.0. Inlet conditions are P =3 kN/m? and T =70°C. Find;
a) the stagnation pressure at the inlet section.
b) the stagnation temperature at the inlet section.
¢) the exit Mach number,
d} the exit pressure.
€) the exit temperature,
) the exit velocity.

5.16. Air with a Mach number of 3.0 flows through a pipe with an area of
0.015 m*. The pressure is 100 kN/m? and the temperature is 50°C. Find the stagna-
tion pressure, the stagnation temperature, the mass flow per unit area, the minimum
area which will give this mass flow, and the velocity where the area is 0.012 m2,

5.17. Air is released from a pressure vessel at a constanl mass tate. The nozzle
through which it is released is of a length'' 2", and the pressure 1s required to fall
lincarly with distance along the nozzle. Find the relation that gives the variation of
the crossectional area of the nozzle along its length ' 2"

Consider air to be a perfect pas and the process to be reversible adiabetic,

3,18, Nitrogen in sonic flow at a 22-mm diameter throal section has a pressure
of 45kN/m?, T= -15°C. Determine the mass flow rate.

5.19. Nitrogen flows from a large tank, through a convergent norzle of 4 cm tip
diameter, into the atmosphere, The temperature in the tank is §7°C. Caleulate
pressure, velocity, temperature, and sonic velocity in the jet; and calculate the
flowrate when the absclute tank pressure is (a) 215 kPa and (h) 180 kPa. The
atmospheric pressure is 102.3 kPa. What is the lowest tank pressure that will pro-
duce sonic velocity in the jet? What is this velocity and What is the flowrate?

5.200 Air flows from the atmosphere into an evacuated tank thorugh a convergent
nozele of 35 mm tip diameter. If atmospheric pressure and temperature are 103,14
kPa and 25°C, respectively, what vacuum must be maintained in the tank to pro-
duce sonic velocity in the jet?

What is the flow rat? What is the flowrate when the vacuum is 250 mm of mer-
cury?

5.21. Air (at 35°C and 750 kPa absolute) in a large tank flows into a 200 mm
pipe, where it discharges to the atmosphere (102.1 kPa) through a convergent nozzle
of 80 mm tip diameter. Calculate pressure, temperature, and velocity in the pipe.
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5.22. The Mach number and pressure at the entry of a subsonic diffuser are 0.88
and 420 kPa, respectively. Determine the area ratio required and the pressure rise if
the Mach number at the exit of diffuser is 0.23. Assume isentropic diffuser of air.

5.23. Air flow through a simple covergent nozzle ending in a throat of 230 mm?2,
The entrance pressure and temperature are 1000 kPa and 38°C, and the nozzle dis-
charges into a large tank at 600 kPa pressure, The entrance velocity is negligible

a) Find the flowrate.
b} What is the maximum discharge rate obtainable with the given supply
pressure? What is the corresponding maximum receiver tank pressure?

5.24. Adrat 100 kPa and 297 K enters a diffuser with a speed of 185 m/s, Estimate
the maximum possible air pressure at the exit.

5.25. Air flows isentropically through a converging nozzle. At the entrance the
Mach number is 0.32, the pressure is 630 kPa, the temperature is 61°C, and the
nozzle area is 0.001 m2. The exit Mach number is 0.82. Calculate at the exit the
temperature, stagnation temperature, pressure, stagnation pressure, density, velo-
city, and nozzle area.

5.26. Air in a tank has a pressure 720 kPa, and a temperature 32°C, It discharges
into the armosphere through a converging nozzle. Assuming isentropic flow,
determine the exit pressure, temperature, and area for a mass flow rate of 0.83 kg/s.

5.27. Air flows in a nozzle at 517 mss, p=1.86 kg/m? and T=293°C. Is an
increase or decrease in area required to decrease the flow velocity?

5.28. Air is supplied to a converging-diverging nozzle at negligible velocity, 700
kN/m? and 300°C, The nozzle discharges into atmosphere which is 100 kN/m?,
Assuming that the flow is ideal and for a rate of 1 kg/s calculate;

a) the exit Mach number,

b} the throat pressure.

¢) the throat and exit areas.

d) the throat and exit velocities.

5.29. A supersonic nozzle is to be designed for airflow with M=3.4 at the exit
section, which is 22 cm in diameter and has a pressure of 7.5 kN/m? and tempera-
ture of —78°C. Calculate the throat area and the reservoir conditions.

5.30. Air flows isentropically through a converging-diverging nozzle. The exit
Mach number is 1.78. If the stagnation temperature and the static pressure at the
exit are 335 K and 100 kPa, calculate.

a) the stagnation conditions (pressure, temperature and density) at the inlet.
b) the exit temperature.
¢) the area ratio between the exit and the throat.
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5.31. A supersonic norzle expands air from 2300 kPa stagnation pressure and
1100 K stagnation temperature to an exit pressure of 435 kPa: the exit area of the
nozzle is 100 cm?

Determine

&) throat area,

b) pressure and temperature at the throat,

c) temperature at exit.

d} exit velocity as fraction of the maximum attainahle velacity,
¢} mass flow rate,

3.32. Air flows isentropically from atmosphere (pressure 102.3 kPa and tempe-
rature 25°C) to a 400 mm square duct where the Mach number iz 1.7, Calculate the
static pressure, the velocity and the mass flow rate in the duct, What is the minimum
cross-sectional area upstream of this section?

5.33. The exit section of a convergent-divergent nozzle is to be used for the test
section of a supersonic wind tunnel. If the absolute pressure in the test section is to
be 65 kPa, what pressure is required in the reservoir to produce a Mach number of 3
in the test section? For the air temperature to be —15°C in the test section, what
temperature is required in the reservoir? Whar ratio of throat area to test scclion
area is required to meet these conditions?

3.34. A convergent-divergent nozzle of 60 mm tip diameter discharges 1o the
atmosphere (101.5 kPa) from a tank in which air is maintaned at an absolute pres-
sure and temperature of 700 kPa and 40°C, respectively. What is the maximum
mass flowrate which can oceur through this nozzle? What throat diameter must be
provided to produce this flowrate?

5.35. A one-dimensional diffuser is designed to reduce supersonic flow to sub-
sonic flow. Find an expression for the area ratio between the entrance and the throat
as function of Mach number M and the specific heat ratio 3



CHAPTER SIX
MEASUREMENTS, UNITS, DIMENSIONS AND DIMENSIONAL ANALYSIS

6 -1~ Measveremenis and Units

Physical measurement is essentially a process of comparison. The tools for this
comparisen are units. To measure the length of a road 15 to compare it with a basic
unit (for example the kilometer). The length of two roads can be compared by refe-
rence to this basic unit.

Uniis are either fundamental or derived. A fundamental unit is arbitrary in size.
[ts historical development has been based on human convenience. Examples of the
fundamental units are the units of length (for example the metre, the yard, the mile,
the kilometre... etc.) and the units of mass (for example the kilogram, the pound,
the ton the ounce, the grain,.. ete). Derived units are not selected arbitrarily, but are
abtained by some definite process (see Appendix D) from the fundamental units, for
example the unit of area is the square whose side 15 the unit of length.

Different fundamental and derived units have been adopted since the early stages
of scientific developments. In 1960 (Gregorian) the General Conference of Weights
and Measures recommended that the “system International d'unites’’ to be known
as 51 should be taken into use instead of existing systems (see Appendix D). The
reason for the choice was its simplicity and promising universality. Since then, many
countries have been progressively adopting the S1. [t is expected to become the only
system For weights and measures throughout the world.

6—2— Physical Dimensions of a Quantity

Assume an established unit of length and take a length equal to L of this unit, that
15 L 15 the measure of that length in terms of the established unit. The consistent unit
of area would be a square whose side is the established unit. Thus a square whase
side is L has the measure of its area as L® of the consistent units of area. Now we
express this by saying that areas measured in consistent units have the dimensional
formula L*

Dimensional formulae for other physical guantities can also be derived. Take for
example a period of time containing T of some established unit of time, then a con-
sistent unit of velocity has the measure L/T in terms of the original units of length
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and time. Thus the dimensional formula of velocity is LT !, Similarly if a unit of
mass has the measure M, then a consistent unit of momentum has the dimensional
formula MLT 1,

Conventionally the dimensional formula is known as the expression for the
physical dimensions of the guantity,

If the symbol /¢/ iz used to denote dimensional eguality and if M,L and T stand
for the measures of the fundamental units of mass, length and time then we have;
Mass /74 M
Length //F L
Time /77 T

It must be emphasized that /// does not indicate either numerical equality or
physical entity, but merely identifying the physical quantity as regards the dimen-
sional formula. Thus if we have;

MA LY TS /4 ME LY T

it follows that

a=xb=vyandc =2
Fundamental and derived ST units in science and enginesring, their symbols, defini-
tions and dimensional formulac are listed in Table (6.1).

6—3 — Significance of Physical Dimensions

To illustrate the use of physical dimensions in a simple manner let us consider the
work W' required to lift a certain body to a certain height ““H*. We may assume
for & start that the work required to lift this body is a function of the mass density
“o', the gravitational acceleration “*g’* and the height “‘H’*. Hence it may be stated
that.

W /// pP gt HE
where

W /// ML2 T2

o //f ML-3

g /A LT™2

H/L
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Table 6.1 SI Units in Science and Engineering, Their Symbols, Definitions and
Dimensional Formulae.

Basic 5I Units

Quantity Wame of Recommended Dimensional
unit unit symbol Formula

Length metre m L

Mass kilogram keey M

Time second =S T

Electric current *ampers Fa fu

Temperature *kelvin K B

Luminous intensity candela cd =

Amount of substance mole mexl =i

Supplemantary

Basic Units

Plane angle radian rad Mon-dimen-—
sional

Zolid angle steradian sr Hon=dimen—
sional

Applied mechanics, mechanical engineering

Quantity 5T unit Symbol Defini- Dimensional
tion Formula

Force newton H kg m/s® MLT °

Work,energy,guan- joule J Hm 10t i

tity of heat

Power ,heat flow watt W J/s wp? 3

rate

Moment of force newkton metre - M om ML2 T'2

Pressure, stress pascal Fa Hfmz wl g2

Temperaturei(basic) kelvin K -

Surface tension newtons per metre - H,/m MT_Z

Thermal Coeffi- recipraocal kelvin - g1 a1

cient of linear

expansion 5 =

Heat-flux density watt per sguare = H/m MT

irradiance netre 5 1

Thermal conduc- watt per metre - W/m K MLT-" -8~

tivity kelvin 3 _n 1

Coefficient of water per sguare - W/m K MT B

heat transfer meter kelvin

Heat capacity joules per kelwvin - J/K m? v -l
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Contd, ..

Table &,1

Applied mechanics,mechanical engineering

pguantity SI unit Symbol Defini- Dimensicnal
ticn Formula
Specific heat joules per kilo- - Fhkg K Lz T2 E_l
capacity gram kelwin I
Entropy joules per kelwin - JSK HLT T &
. . -2 -1
Specific entropy joules per kKilo= - Jikg E L2 SR S
gram kKelvin 5 5
Specific energy Joules per kilo- - J kg s et
gram
gpecific latent
heat P 5 1
Viscosity(kine- metre square per - m Sy LFE
matic) %
Viscosity{dyna- metre sguared per - Pa = ML-l A
‘mic)
Electric resis- ohm ViR i, T A ¢_2
bance
Electric charge coulemb = kS T
Electric poten~ wvolt WV WAn MLZ P_3 5
tial differences
or wvoltage or
c.m,.f. 4
Electric conduc- siemens 3 Al P T o
tance .
Elgstric capa- farad F K s5/% ¢% M1 2t
citance
Luminance candela per sguare - cd /m” 21,72
metre (nit) 2 _a
Illumination Tux 1x 1 m/m =L,
Luminous filux lumen L cd. sr Bl
Freguency herts Ha 5 ol
Electric field volts per metre - WAm M q':"_3 e
strength 7 -2
Electric flux coulombs per sgquare - C/im $IT "
density metre
Magnetic units
Duantity 5T unit symbol Defini- Dimensicnal
Lion Farmala
] - _t-\_..
Magnetic flux weher Wi Vg MLzT - -
Inductance henry H L . 2r ™2 §e
Y
Magnatic field amperes per metre - A/ $L
strencth
Intensity of amperes par mektre - BiSm &L 1
magnetizgation 5 x
Magnetic £lux tesla T Wh/m MTHE T
density
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therefore A

ML2T=2 /// (ML=-3? (LT-3b 1.£

that is
MLET =27/ M2 LA- 32+ btc) - 20

It follows that
a=1,—-3a+b+¢c=2
and -2b = =2

that is
b=1land -3 +1 +c=2

that is

¢ =4
Thus

W /i pg HY
or

W/ pg HH?

The last dimensional equality indicates that our assumption that the work W is a
function only of the three physical quantites 5, g and H is not correct. A fourth
physical quantity must be taken into consideration. The dimensional formula of this
fourth guantity must be like H® that is L3, This conclusion indicates that the volume
of the body should also be considered in the analvsis.

6—4— Mon-dimensional Quantities

A non-dimensional quanlity is such that its measure is independent of the choice
of the fundamental units, where it is to be understood that consistent units are
employed. The dimensional formula for such a guantity, therefore has all its indices
zeroes. The obvious nondimensional quantities are those which are defined as the
ratic of two physical quantities of the same kind. Examples of these are; the coeffi-
cient of solid friction which is the ratio of two forces, and the angle in radians which
is the ratio of two lengths.

Mon-dimensional quantities are useful particularly for the purpose of modelling
and experimenting under different conditions,

6 —5— Physical Dimensions of Differential Coefficients

Let ¥ be a single valued continuous function of x, where each of x and y represent
a particular physical quantity, then an increment A v in y corresponds to an incre-
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ment "4 x in %, and a differential coefficient can be given as; dy/dx. Since x and ¥
represent certain physical quantities then it is essential that the increment A v be of
the same dimensional formula as v, and the increment  Ax be of the same dimen-
sional formula as x, i.e.

sy SSF vy and hx S

Hence it follows that;

dy/ax /1] L

Alzo, by maihematical definition we have:

a’y _
dxz

ﬂfm
-

From which it follows that:

2

=N

g7/ 2b dncrement of (dy/dx) (6.1}
an increment of x

Ol

x

Again each increment has the dimensional formula of the guantity it represents, i.e,
the numerator of equation (6.1) possesses the dimensional formula of (dv/dx) which
is known to be identical to that of (y/x), and the denomenator possesses a dimen-
sional formula identical to that of x, hence it follows that:

2 x ;
87y gy XX gy Lz (6.2)
ds * -

Proceeding step by step in this way, we arrive to the conclusion that

n

SY L

dx x (6.3)
EXAMPLE 6.1

Deduce the dimensional formula for velocity and acceleration by using the first
and the second derivatives of the distance x with respect to time L.

Data of the problem.
* yvelocity
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* geceleration

dzx
{'_‘H:.2

a =
Requirements
* Deduce dimensional formulae for v and a.

solution
KA Ly £46T

Velocity . dm x L
¥ v <img BHCR HLE
2
dx * L
. : a =—= [/ = [t =
Acceleration a tz tz . 2

f—6— The Physical Dimensions of Integrals
By definition the integral
-
i = v odx

=

Stands for the sum of the products v, A x between the limits x=% and x =b. Since
% has the same dimensional formula, it follows that
LAsfxy

Assurme we have a double integral

J=‘]ded}’

This again stands for the sum of a product of the type 5. dx. dy between some
specified limits and v analogy to the above argument it follows that

PAffeaxy

Similarly for the general multiple integral



we derive

Mo 2y 25 .. 2 (6.4)

6 —T— INmensional Analysis and the 7 -Theorem

Consider the dimensional equality

SR Y

and assume that the basic dimensions of the physical quantities v 1+ ¥2u ¥y and y, are
three; namely mass M, length L and time T. Three equations in the three unknowns:
a, b and ¢ can now be deduced and the numerical values of a, b and ¢ can be found,
Also one nondimensional quantity can be formulated which relates the four physical
quantities y,, ¥,, ¥; and y,.

If, however, we have five physical quantities ¥ys ¥2. ¥3. ¥4 and v in a dimensional
equality such as

while the basic dimensions are still three, that is M,L and T, then the number of
deducible equartions in the unknowns &, b,c and d remains fixed at 3, in which case
the numerical value of each of these indices can not be found, but may be expressed
in terms of one another. In this particular case three of the indices can be expressed
in terms of the fourth. Also in this case two non-dimensional quantities relating the
five physical properties may be formulated,

Mow if the number of physical properties connected by the dimensional equality is
&, then we will have five indices but only three equations evaluating three of these
indices in terms of the remaining two, but in this case three non-dimensional quan-
tities can be formulated.

As a rule if the number of the physical properties related by a dimensional equa-
lity 35 “*n’" and the number of basic dimensions involved in this equality is **B* then;
i} The number of unknown indices is “n—1""
iiy The number ol deducible equation in the unknown indices is B>
iii) The number of non-dimensional quantities that can be formulated is “n-B"

The above argument is the basis of the main method of dimensional analysis
which is known as Thomson’s theorem of numerics or Bunckingham’s w-theorem,
This theorem iy stated as follows;

If & physical relationship can be represented mathematically, by expressing one
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varighle ¥y in terms of a number of other independent variables ¥au ¥y ¥geooes ¥, such
as ;

Y& By amy ayypew) (6.5)

or
£ iy, - Yo w¥y eiYgpeoeeg o bsng (6.6)

then a simplified version of this relation may be obtained by a process of reducing
the number of variables into a lesser number of non-dimensional quantities. This
can be explained as follows:

1} Let a number **B* of the *n" varizhles ¥ys ¥2. ¥3....¥, be regarded as pri-
mary ¥'s where **B" is equal to the number of basic dimensions {c.e.
length L, mass M, time T and lemperature & ) required to describe the
physical quantities involved. Note that each basic dimension must appear
at least once among the dimensions of the prl;mar}r ¥'5.

ii) The remaining ‘“‘n-B” v's are now expressed as “'n-BY dimensionless
ratios known as “numerics” or T quantities using the primary v's for the
purpese of forming these ratins, 1n other words each quantity is
formed from products or ratios of powers of y's.

i} Statement  (6.6) may now be replaced by

diow T 0 | s b | m_?)

e i n-3

s L 1

The meaning of this theorem is to be illustrated by the Following.

6—7—1~ Belective Choices Method For Establishing Dimensionless Parameters
Hepresenting Force of Drag on a Submerged Body

If we confine ourselves to flow systems or models which have geomeirical simila-
rity we can say that the force exerted by a fluid stream flowing past a submerged
body depends on the physical properties of the fluid say; density £ and viscosily .,
on the velocity ¢ of the stream and on the linear scale or size 2 of the body. Hence i
may be assumed that force of drag F is a function of p ¢ @ ; p andeso

that;
(6.8

or

(6.9)

In this case there are five ¥7s, that is n= 5 having three dimensions M,L and T that is
B=3. In particular the ¥'s are
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P4 oMLY, s 47 omMLTR
voogss oML e 0 g
c Fid LT

The choice of the three dimensions M, L and T follows from the fact that we are
concerned with purely mechanical phenomena in this example. However, if the drag
is expected to be tremendously high resulting in substantial temperature rise then a
fourth dimension 8 representing temperature may be taken inte account. In fact
this fourth dimension becomes quite relevant in convection hear transfer.

Now various choices are possible for the primary ¥'s and they can be considered
in turn.

First Choice

Take p, £, ¢, as primary ¥'s we then require dimensionless ratios for F and 1«
For 1 let us try

Fg o oPoed (6.10)

If this quantity is Lo be dimensionless then we must have

PO p% gh gl {6.11)
thart is

ML T2 s P @ (6.18)
that is

8 = ] , 1 =-3a +b+4d

and =2 = - b

that is

b =2 and 4 = 2

Hence we obiain

L = F/ & s

By a similar argument we can obtain
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Tl 5 a2 ) ppk

The methed of dimensional analysis therefore reduces the original statemment (6.9) to
the much simpler statement

F 2 _
b3+ pop) = O (6.12)

pe” &
That is we have reduced a relation involving five variables to a relation involving
only two variables. Statement {(6.12) can equally be expressed as

gl 2e (6.13)
iz

whers

Bf |:u:32 'r'vz

is known as a foree coefficiem C,. and Pl is known as Reynolds number Re.
Hence statement (6.13) can be put in the form

Cy = £, (Re) (6.14)

Second Choice

This time take M, £ and ¢ as the primary y's. We then require dimensionless
ratios for F and g | Using the same method as before we obtain

R = pek
i T peR ane g BT
50 thar
F _ 5 (pet
fer ™ Iz by (6.15)

where Fsuc k is an alternative form for force coefficient so that once again
force coefficient is a function of Reynolds number.



Third Choice

Let us take £, 1 and £ as the primary y's. We then require dimensionless
ratios for F and € and we find that

_ER _ bt
1T.1 = :‘2‘ and "2 e e
50 that
Fo oc i
% Bl o (6.16)

p
where FpJ/ 1° i8 vet another form of the force coefficient.

Fourth Choice

Taking p, ¥ and c as the primary ¥'s, it is easily verified that the result is the
same as in third chotee above,

It should be mentioned here that statements (6,13}, (6.14) and {6.15) are alterng-
tive forms of equation (6.9),
6~ 8 - The Comprehensive Approach to the Use of the 7 Theorem

The validily of the method of using the 7 -theorem may better be proved by the
following alternative approach.

Considering the same problem of the foree on 2 submerged body, we assume lirse
of all that

F=flo, 1, &y € (6.17)

Let us suppose that this functional relationship can be expressed mathematically

and more definitely as a series of i-terms, each formed from powers of p » u, 2
and ¢ that is

F= E o [oft P 41 el (6.18)
i i

o being a dimensionless coeflicient. Hence for cach term we must have

A T g g2 (6.19)
or

bi ai -1, el

- {ML_L'.I L LLT &) (ﬁiﬂj

MEBT STy
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From which we chtain
ai + hi =1
~3al — bi +di + ¢ = |
—bi—egl= -2

We thus have three equations with four unknowns and we still have the following
choices;

In the First Choice when expressing ai, di and ei in terms of hi we get

ai=1-bi
ei = 2 — hi
di =2 — bi
and
Foer & ? [ gi=pi i 2-bi 27bi,
1 1
= A T
=L o [abfee® gL b oBil LB (6.21)
1 i
T
F N . . Y 6.22)
o B o G (
:--::2 e it =L
or
o
—5 - & (6.23)

i.e. the force coefficient is a function of Reynaolds number,

In the Second and Third Choices we express bi, di and ei in terms of ai and ai, bi
and di in terms of ei respectively and a similar argument like that in the first choice
vields

E s .[E.‘_":.P; ai
T b
or
F _ el
i - fz [ U } (ﬁ.m}



and

- - et a3
E‘.Ep = I & =%
1]
or
Fo_ g ek
A (6.25)

6 —9— Physical Similarity

Theoretical analysis seldom give a complete solution for an engineering problem.
It is frequently necessary to turn to experimental results to complete the study,

Much of such experimental work may be obtained on the equipment subject the
investigation or an exact duplicate of it, but a larze part of this experimental work s
carried out on scale models. Comparisons are usually made between the prototype
ii.e. the full scale equipment) and the model. For such comparisons to be valid che
sets of conditions associated with each of the prototype and model must be physi-
cally similar.

Similarity between the objects can be in one or many forms ez,
Gieometric: which is similarity in shape,
Kinematic: which is similarity in velocities and accelerations
Dynamic: which is similarity in forces.
Similarities in temperature distributions, electric fields and many other enginee-
ring phenomena are also possible,

A combination of two or more of the above similarities i3 known as physical
similarity. An illustration of the use of such similarity is given in the following
example.

EXAMPLE 6-2

The following example is intended to demonstrate both approaches of the
theorem that is, the Selective Choice Method section 6.7_1, and the Comprehensive
approach section 6.8 and the use of physical similarity section 6.9,

The Problem

The power “*P*" required to pump a liquid through a pipeline depends on:
i) the length of the pipeline "g "
1i) the diameter of the pipe used **D*°
iii) the dynamie viscosity of the liquid "p "

238



iv} the density of the liquid "2"
v} the velocity of the liquid in the pipeline “C"

Formulate non-dimensional quantities that relate P, £, ¥, &, Cand D,

A pipeline in which oil is to flow at 2 m/s is Lo be simulated by a model pipeline in
which water is 1o be circulated at § m/s. The density of the oil is 0.8 that of water
and its viscosity is 10 times that of water. The power consumed for circulating water
in the model is 10 kW. Find:

a— the geometrical similarity that dimensional analysis imposes between the pro-
totype and model pipelines,

b— the power required to pump the oil in the pipeline,

Data of the Problem

# Pipeline with length % and diameter D

* Fluid in the pipeline with dynamic viscosity ¥ density © and velocity ©

* Power required to circulate fluid in the pipe line P

* Prototype pipeline has oil with density 0.8 that of water and viscosity 10 times
that of water

= (il flows at 2 m/s

* Water in the model flows at 5 m/s

Requirements
* Non-dimensional quantities relating P, £ U r2 » Cand D
* Geometrical similarity between model and protolype.
* Power required to pump oil in the pipe line

Solution
The variables we have and their dimensional formulae are as follows

P/ MLET 3

i 1
AWML T
o A4 ML
c/Af LT

Dsff L

Selective Choices Method

In the first choice we select P4, pand P .
Thus
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that is
OO I B S 17} Sl e Rl 171 g

or

2 3 bt+d a-h-3d4 =13

Equating indices we get
l=b+d,2=2a-b—-3d -3=-b
That is
b=3,d= -2anda = -1

Hence

Giving a non-dimensional parameter

B Ezf_
3

m p—

1 5

which may be called power coefficient

In the second choice we select B B, and C which in a similar manner as above
vields a non-dimensional parameler

known wsually as Reynolds number.

In the thirg choice we selecl B, 2, C and I which vields another form of Revnolds
number

In the fourth choice we may select P, ¥ C and D which give another form of the
power coefficient
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A fifth choice may be suggested as 8 C, D and & thus
e 444 c® pt i
that is

we™? 1% gy oqprhE Lt L9

whien equating the indices of M this gives 1 = 0 which is not true. Thue indica-
ling that this choice cannot form a nondimensional parameter.

The Comprehensive Approach

Mow lollowing the comprehensive approach we get

t =3
S0l L S
that is
Me? 172 gy 1 et TP 3@ pplye L f
or
EE aFd 177, i L 2-b-3dte+f p-b-e
Equating the indices on both sides, we get
l=b+d (1)
== =0l A o (1)
—3=—bh-e¢ (I}
giving
dis] =
e=3-"h
f=2-a-hb
Thus we have
booArs R plth 3-b 3-a-p



or
b

: scd p? By
P Y pES D iD‘r tncn}
that is
P L.a b oyb
fAF 4SBT (=5
nc302 D £CD
that is
P sl oD, .
et = F {(Z) , (=01
DC.S D2 [B] H

Ty % Power coefficient
oo o
I which may tfe called
5 ¥ scale coefficient
and
"  _BCD Reynolds number
3 v

IT we solve equations I, T and I in a different manner say by expressing a,b and d in
terms of e and [ we may oblain a power coelficienl similar to Ty A well as the
other two coefficients LEY and Tr 5 *

However, the possible non-dimensional parameters are;

Mow, the only non-dimensional parameter that contains geometrical dimensions

exclusively is

™ =

g =

o e

This represents the geometrical similarity imposed by dimensional analysis on
both the prototype and the modle. This physically means that the ratio of the length
of the pipeline to its diameter has to be the same for the prototype and the model,

Physical similarity between the prototvne and the model is still governed by the
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other three parameters T 10 T 4 and T _ | Using any twa of these should be

enough for evaluating the power requiremen: for the oil pipeline as follows:

Taking the two parameters

2 i
S b = _ DGR
L 5 and 5 m

then we have

T (model) = 7. (prototype)

7 2
: o g B
By i Em _ PE’ B E (%)
T - 3
JT‘.'I. 1}
Also
T = 1
3 ({model) 3 (prototvpe)
that is
Pm St _ Pp S Fa
o I"I[J
or
2 C u
(Bofg y = W W R
Bom ‘o CEJ He!

Substituting for (£ ;zm} into IV we get

B

F o C u

s = 2 N R -

P Py ‘C‘p [
that is

B 1 2 2

JE) 2 o =t B Rl A

3 e

m
or
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PROBLEMS ON CHAPTER 51X

&.1. Determine the dimensional formuls and the unit in 8.0, for each of the fol-
lowing quantities:

(a) volume flow rate (b} angular acceleration
(c} velocity gradient {d) pressure

(¢} torgue {1 work

i) shear stress (h) power

(i) energy (k) momentum

{[} mass moment of inertia.

6.2. Determine the dimensional formula and the unit in 5.1, for each of the fol-
lowing: '

ia) bulk modulus K = - (:—3}T
: thility 2 1 v
{b) compressibility k = sk = ¥ay

shear stress
velocity gradient

(c} dynamic viscosily U =

_ dynamic viscosity
density

(d) kinematic viscosity

(e) specific enthalpy h = ——r—BL

unic mass

: EL]
i tp = T 1

P
(g) gas constant R

{h) thermal conductivity k = 42  dx
dr dT

o] res

{1} heat transfer coefficient

4

L L
A dc * ET

=

{k) surface tension o

v = specific volume, p = pressure, T = temperature,
C, = specific heat, at conslant pressure, ) = heat quantity,
t = time, x = distance, A = area,

6.3, Construct one dimensionless quantity from each of the following groups:

(a) v, e, & by ¢, %, 8 {(2) pyu, e

v = kinematic viscosity, ¢ = velocity, £ = length,
g = gravitational acceleration, P = density,
¥ = dynamic viscosity,
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6.4, Check the dimensional homogeneity of the following equalities:

e

g RV b} W = mRT In —-

{a} p '|.r2 = v]_ (b m n pz
{cy a = ¢ i—i (d) Cp dT = d (u + pv)

() PV = %Hmcz (K iz a dimensionless number)

(£) dp = &T dv * & % b dT (b ie a conscant of
V- B) the same dimensions

as V).

P o= pressure, Vo= volume, W = work, m = mass, B = gas constant, T = tem-
perature, a = acceleration. ¢ = velacity, x = distance, C,, = specific heat at cons-
tanl pressure, ¢ = internal energy, v = specific volume.

6.5, Use dimensional analysis to correlate between the different quantities speci-
fied in each of the fellowing groups. [ndicate incorrect assumptions if there are any,
Also show your correlations in non-dimensional form.,

() The velocity “*C” of propagation of surface waves on a shallow tigquid which
is assumed to depend only on the depth of liquid **d”’, the density “P" and
gravitational acceleration *'g*’,

(k) The period of a pendulum “*t'" which is assumed 1o depend on the mass
“m", the length "¢ ", the angle of swing """ and gravitational acce-
leration g™,

{¢) The velocity “'a’ of propagation of sound in a fluid which is assumed to

depend on the density "p"', viscosity "u" and the bulk modulug “K*

(d) The volume flow rat “av/de of fluid passing through a nozzle from a

L1
1

pressurised  reservoir which is assumed 1o depend on density "p
rEservoir pressure “p” and nozzle diameter *d”’,

6.6. The volume flow rate "av/de” o & fluid threugh a sharp edged orifice plate
depends on the orifice diameter *d™, the pressure difference across the arifice
"Ap", the density "p', and the viscosity "u". Show that:

¢E—£—1—“ )
dp* p
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&.7. The amplitude ‘A" of vibration of the system shown depends on:

k = spring stiffness (force per unit length of expansion or compression of spring),
M = Inass,

F, = amplitude of disturbing force,

w = frequency of disturbing force.

Use dimensional analysis to obtain the form of an equation relating **A’" o these

variables.

spring of stiffness k

i
i

&.8. The power required to drive a propller depends on propeller diameter D",
mass density of the fluid "p " , velocity of sound in the fluid “a’’, angular velocity
of the propeller “N"", Free-stream velocity “°C", and viscosity of the fluid "p".
Deduce the dimensionless groups that characterise this problem and deduce a for-
mula that gives the power in terms of these dimensionless group and any of the
above parameters.

6.9. Pressute drop in pipe flow depends on pipe diameter “‘d™’, fluid velocity
. fluid density "p" and dynamic viscosity of the fluid "u" . Find a dimension-
less quantity that correlates the variable parameters of this flow.

A test 13 to be carried out to simulate the flow of oil by using water in a particular
length of piping. At what velocity should water flow through the pipe in order to
fulfill this similarity knowing that the density of the oil is 0.8 that of water, the
dynamic viscosity of water is one third that of the oil, and the oil is to flow in the
pipe at 25 m/s. '

&.10. The drag foree “*F* on a subsonic aircraftl depends on the scale of the craft
wg ,the speed of the aircraft'*C**, the density of the fluid"p" sand the viscosity of
the fluid "u" . Formulate dimensionless guantities that relate the above variables.

An  aircraft is to fly at a speed of 300 m/s at 10,000 m altitude where the tempe-
rature and pressure are —453°C and 30 kNS m? respectively. A 1720 th-scale model is
tested in a pressurized wind tunnel in which air is at 15°C. What pressure and velo-
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city should be used in the tunnel if the drag force on the model is to be 110 th of
that on the prototype, (for air, take p = pRT and uw & T4).

6.11. The maximum pitching moment produced by the water on the hull of a
flying boat as it lands “M__ ** depends on the following variables:
angle between the flight path and the horizontal My "
angle defining atitude of aircraft "g"
mass of aircraft “m”’, length of hull """
radius of gyration of aircraft about its axis of pitch “R”
water density "o'" and gravitational acceleration ““g’’.
Use dimensional analysis to obtain a form of eguation for M a o terms of
these variables,
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APPENDIX A
CENTROIDS OF COMMON SHAPES OF AREA

Shipe z 1] Aren
Triangular ares - & h Eh
¥ 3 2
bpdogd
(uarter.circilar ar dr "
area ek A = & :
= r
i ok .
Semicircular ares _z:l = a ;_r %
% -3
Quarter-cliptical 40 4k =ak i
ares b 37 D
Semieiliptical = St
ki ” 3 > o
Semiparabedic = m o
anca g 3 3
Prrabolie area o 34 Sah
5 3
2 "
Farulwlic span- e A da 3h gh
drel I r T l 4 i1 5
[#]
PR R
i
Ceneral spandrel Lt 4 h L ok % h
C G l nod 2 in + 2 n+1
a
R
r"'"-'ﬂ-.l'
Cireular sactor U f1gina 0 i
T —
— =
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ATPENDIX B

MOMENTS OF INERTIA OF COMMON GEOMETRIC SHAPES

=] k1
I 3 bh
A 1
If 13 b™'h
Rectangle L_ % bh’
1.3
I 3 b’ h
§ e
L T bh
Triangle 1 q
I, 3 bh™.
o |
I, I, 3™
Circle
Semicircle L =1 =2 ar
}r‘i
e I =1, =L &
Quarter circle _E)_ X% 3 ¥ 16
0 r--l
I, ﬁli mab’
Ellipse L, {11: L
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APPENDIX C
THE PROCESS PATH FOR A GAS UNDERGOING A GENERAL QUASI-
STATIC (REVERSIBLE) THERMODYNAMIC PROCESS

The Polyvtropic Reversible Process

Let us consider the application of the law of conservation of ¢nergy [0 a macros-
copically small fixed amount of gas"Am" in a fluid continuum undergoing a general

guasi-static (reversible) thermodynamic process.
In its general form the law of conservation of energy states that:

- R Tin = y
(d Qi | QD:I + [d 'h‘i d "lc-] + l!c_.n..i £y dmi Ec'

= dE = dim €} (.1
When applied to the above quantity "Am" and since dm; = 0 and dm, = 0, the
above equation (6.1) reduces 1o
{d Qi -4 «',‘;-G] + (d wi =4 ND:I = Am de (C.2)
We may also put, Q; =4m 95 and Qﬂ = Am Tg where g and g, are
respectively heat added and heat rejected per unit mass of the system wamn
s0 that,
4Q, = 4mdg and & = e dq,
Also we may put:

W= Am W and'h'e=.-ﬁnw-?

i 1 o

where W and ¥_  are respectively work done and work received per unit mass of

the system so thal:

W = m d W - ;
g i & dui and B fnl:uds.‘}

Substituting for dQ;, dQ,, dW, and dW _ from the above relations into equation
i 2 yields:

o - d
[&m dqi Am dan +  [fm d W, fsm o d -"G]

(C.3)

= tm e
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50 that:

dqt'ﬁlq°+dwi—duc=d (C.4)

o

The quantity € is also expressed as:

where no chemical energy is involved,

However, close examination of the different components of the quantity £ indi-
cates that both kinetic energy and potential energy are completely interchangeable
with work. In other words any gain or loss in either of these quantities will be on the
expense of either work input or work output to the mass dm. Even if such gain or
loss is on the expense of the internal thermal energy "Amu™ , kinetic energy and
potential energy can still be classified as work and may be included in the terms dW:
and dW , so that the quantity € is only equal to the specific internal thermal energy
of the mass. Hence &8 = u, or d € = du, so that equation (C.4) can now be
written as,

{dq1~qu}+idui-duD:- = dau (C.5)

The specific quantities of heat-exchange q; and g between the system and its sur-
roundings may also be evaluated in terms of the temperature “T"" of the mass Am
that is 1o say:

9, = £,T) and q = £ (T) (C.6)

50 that:

daq; = £ [TV 4T and d g = £ imoar (.7

Now [ {Tyand £ (T) would be the specific quantities of heat (i.e. heat per unit mass)
that the mass Am receives from andsor rejects to its surroundings for a change dT
in its own temperature,
As shown before the quantity du can be given as;
du = (£ a0 = € . 9T (C.7a)

W

Now substituting the quantities(C.6), (C.7) and(C.72) into equation (6.5) we get:

(£ - £ Av— - Bu '
g (T A - £ (T) AT) 4 (p dv, = p dv_) g 4T (C.8)
In most thermodynamic processes, while heat added and heat extracted from a
syslem may be expressed separately as functions of the temperature of the system

the work interaction can he expressed in terms of the pressure and volume of the
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system. However in the case of work being received by the system dv, should be

negative and in the case of work being done by the system dv,, is positive. Thus the

guantity pdv; — pdv, becomes p{—dv, — dv_) or in general — pdv. Equation (C.8)
therefore becomes:

—pdv = 23 ar- g moar v T T (C.49)

This equation gives the process path for a gas undergoing a general process in

terms of its basic properties p,v and T.
For ideal gases we have:

pv = f(T) or p = f(T)/v

From which into equation (C.9)we ger:

ey B _ 3w F o iF
= £0T) = =i f: (Tl +E0 (e} dr
or
dv Au i yaansTy, _OT .
- T = rlﬁ:l i !1 [T} + ED ol S ElTI [(..-.J.[l}

Now assume that the gas undergoing this general process is a perfect gas whose
equation of stale is ; pv = RT then we have:

f(Ty = RT

and by definition the specific heat at constant volume of this gas is constant so that;

du
-] & = constank
[ Py~ B r

Assume also that the specific quantities of heat f, (T) and f ,:1 (T} are constants 5o
that:

S | LT
1f]=ra and ford-b

Now substituting for the quantities f;'(T), ,'(T), g_“ and t (T) in equation (6.10)
T
we gets

C = a+p
2y " i 2 i T 2 C.11
RS S [l SEMEAIES i - i B i )
that is
C_ = a+hb
v T g %
{—R__y ? + —-—v = O ((___[2}



Integrating this equation gives:

C = a+hb
e} §
v ® Constant L K
8
{ )
C..=—a +b i
i E: = Constant (O 14y

ar

Emploving the uquz'i'tion of state For a perfect gas, that is pv =RT, into the above
equation we get:

p v : = Constant (C.15)

This relation may be stated as:

gV = constant (. 16)

where
F- . g—
R T (C.17)

Putting
B o Gl L {(C.18)

we gel
el P S V. LA Sl (- A9
o e Co-a+h L3

W w

A general guasi-static thermoedynamic process in which the three fundamental
properties p, v, and T of a gas change, is known as a polvtropic process. I such a
process is undergone by a perfect gas that exchanges heat with its surroundings at a
constant rate (**—a + b’ energy units, per unit mass per degree temperature) all
through, then this process is governed by equation (C.16)

Equation{C. 19}, however, indicates that “*n"’ may have any value from-= 4 4=
as follows:

Ifi—a+h)=0 thenn = ¥
[F{=a-+b)>0D then ¥ > n > |
fi{i—a+b)<0 then—m{_n{ S
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These conclusions are better illusirated by Fig. (C.1)

40
Ny ASymEOLic o n = ]
n=1 A
. = ) B
(=a + b) 12 / {-Cv] 4 {=a + b) fle
!{"a + bl o= - chl \
= -
P
n Vs {=a + b)
Fig (C.1)
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Now combining both relations pv" = Constant and pv = RT fora perfect gas we
get:

g v n_ n 25 v, n
i PO = e, = & =5
P %1
PpVYy Py . Py Y
= ] = Sl el
i Ts Pa 1 T
50 that:
V2 '1'1 W n
v, T, - %
1 2 1
that is;
n-1 n-1 n—1
Tl vy . = "1‘2 vz ar T ¥ o constant (C.200
Also putting v = == in the above relation we get:
s
1-n 1-n L=y
n ri - L = Ean -
05 = Ty Dy = Tog comstant (CC.21)

The relations governing the behaviour of a perfect gas undergoing a general gua-
sistatic process (polyiropic reversible) may now be summarised as follows:

n -1

pv = const PE = const
n=1 1-

T v = conat T p Tos const
1-n

T p B = const

pv= =T
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Constant Pressure Process
In a constant pressure process undergone by a perfect gas we consider the two

relations:

Al g const and p v = AT

from which we get:

T - T
L ik i i
e = Ifu—J and — ==
2 1 2 Y
e
L Frem § w -
2 i1 o=l
== = =5
1 1
i.e.
n-1 ==1] ar o= 0
i
¥y o - a+h
—.—U—-_ = O
Ci =g +in
W
i.g.
TE, = fa - b 2r  C, = (a-= bl

Hence the net thermal energy added 1o the svstem per unit mass per one degree
change in its temperature, (i.e. the quantily “*a — b)) must be cqual in magnitude 1o
the specific heat at constant pressure *C o of the gas.

Isothermal Process

In an isothermal process undergone by a perfect gas we consider the two relations,

pv!" = constanl and pv = RT
from which we get:

o v, n =

L)
—

=

L P
o [is®
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or,

Y. N w
2y e 2
b 1
le;
n.o= 1
or,
TCU-‘-ai-b
e Lo i L
Cu-a+b
ar,
¥ C.-a+hb = o=t Fih
W y W
that is,
y = 1 =34 2 Feme

in which case the relation fails to give sensible information. This is natural becanse
the rate of exchange of heat between the system and its surroundings is not a Mine-
tion of temperature, while “a’™ and “b™ are originally expressed as rates of heat
interaction per degree temperature.

Constant Yolume Process

In a constant volume process undergone by a perfect gas we consider the two
relations:

l-n
= copstant and o v = RT
which give
1-n po
Ts 5 U Re
. S [._, and :.... + e
L By 2L By
LE.
l=n
p,-1 B, —
=23 SR 6L
By By
that is:
____1;11. = =] or l=n = -y



That is :

1L =& ({which cannoct be true) or n = =

50 that
C - a+
W
that 1%
C = a+hb - o
W
or

which indicates that the net thermal energy added to the system per unil mass per
degree change in its lemperature must be equal to the specific heat at constant
volume “*C "7 of the gas.

Adiabatic Process

If the process undergone by the perfect gas is adiabatic (i.e. no heat exchanged
between the gas and its surroundings) then we have

a+hb=210

Hence the law followed by a perfect gas undergoing an adiabatic guasi-static process
151

Y

g ¥ = const

OFf course for this process we have

oW = const, B2 = conat
- L=y
T vl X - consk, e =  const
i~y
T p'T - Consg, and also,
pv = HT



Different Processes on the p — v Diagram

Pressure-volume relationships of several quasi-static processes corresponding to
different values of “n"" are compared in Fig, (C.2).

Starting atl point b expansion and compression are curves located in the lower
right and upper left guadrents.

Processes that exhibil negative values of n are not commonly encountered in
practice, MNevertheless these processes are possible, and they imply a simultaneous
decrease in volume and pressure,

Fig. (C.2)
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APPENDIX D

BASIC 51 UNITS

Ma Quantity Mame of unit Recommended
unit symbol

1 Length metre m

Z Mass kilogram kg

) Time second g

4 Electric current *ampere A

5 Temperature *kelvin K

& Luminous intensity candela cd

7 Amount of substance mole mel

Multiplication factor

Standard Multiples and Sub-multiples

o Fre- Sym-
fix bol

Cne
Cne
Cme
e
(e

Ten

million million({billion)
thousand millicn
million

thousand

hundred

Unity

me

Cne

tenth

hundredth
thousandth
millicn

thousand millienth
million millionth

1 000 000 000 000 =102 tera T

1 000 000 00D =10° giga G
1 000 000 =10°  sega M
1000 =10° kilo k

100 =11:r2 hecto !1'Ir

10 =1Dl deca da
1 a1p? I

0.1 =107 deci
0.01 =10 centi

1.001 =10 milli

0.000 000 001 =10"° nang
0.000 000 000 001 =10"1% pico

thousand million millienth 0.000 000 000 000 001 =101 femto
million million millionth 0.000 D00 000 000 000 001 =10"'% atto

*

d

*

[

m

0.000 001 =10°% “micre u
T

p

£

a

*It is suggested that all 31 units be expressed in "preferred
standard form" in which the multiplier is 1030 where n is a
positive or negative whole number. Consequently the use of
hecto, deca, deci and centi iz to be avoided wherever possible.
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APPENDIX E
PARTIAL DERIVATIVES AND TOTAL DIFFERENTIALS
Consider f = fix,v) where x and y are independent variables. If v is held constant, £
becomes a function of x alone and its drivelive may be determined as if it is a [unc-
tion of one variable. This is denoted by 8 £-9x and is called the partial derivative of

f with respect to x. Similarly if x is held constant, f becomes a function of ¥ along
andg f;fc]}"ii called the partial derivative of § with respect to v, These partial deriva-

tves are defined by

. : o {E.1
3 RECGH). wongwy EOEBGHISEE.N) )
: AXes O
Af _ 2£0x,¥) | gy B0yt ay)-fix,y)
ay 3y W ny (E.2)

This is illulstrated as Follows, If, for cxample,

Fum x3 + xs Yﬁ + Gy
then
% = 5% v sty
i£ = SEsv? + 3
¥
Also, il
: 2 2
f = sin [(ax™ + by"™)
then
af o4 nand 2
o Zaxcos (ax” + hy™)
%% = 2Zbv cos (axz + byzj

In each case the differentiation i carried outl exactly as Tor a lunction ol one inde-
pendent variable with the other independent variable considered as a constant.
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Mow, if x and v have infinitesimalchanges AX and AY respectively the change
in the function of becomes

Af = f(x+ax, y+ay) - f£(x,y) (E.3)

where AX and AY may approach zero in any manner. Under this condition if
Af approaches zero regardless of the way in which AX and ﬁ? approach zero,
then f=f(x,y) is called a continuous Function of x and y. It will be assumed that
f(x,¥) is continuous and also that 3 £/3Xand 3 £4 ¥ are continuous. Equation (E.3)
can be rewritten as follows

af = f(x+ x,y+dy) ~ f(x,y+ay)
+f(x,y+by) - fx,v)
. Elx+ax,y+sy) - f{x,y+sy) K
ik d

4 f(x,y+ﬁrlﬁ- £(x,¥) by (E.4)
- )

On the limit when 84X, 4Y and AT tend to zeros, the above eguation becomes

dfw L. dy. 4 2T gy (E.5)

In general, if

Fimififxoyizn] (E.6)
then
af af af af
df = .—E dx + ﬁ d}u" + —--z—. dz + r dt (E.?)



APPENDIX F
ENGINEERING DATA
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Table F.1 Important constants

Constant

Value

Gas constant [for air z
air, Ra1r

287 Jikg C

Density of water at normal

temperature and pressure, =5

1000 ko/m"

Density of mercury at normal
temperature and pressure, pHE

13.6x10° kg/m®

standard acceleration of gravity
fat sea level and latitude 45
degree], g

9.806685 mis
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Table F.4 Density of some common liquids
at standard atmospheric pressure

Liquid Temp. ﬁenSiEy

oc kgfm’
Benzene 2 876,2
Crude oil 20 B55.6
Ethyl alcohol 20 Ted.b
Freon-12 15.6(1345.2
GCaseline 20 680.3
Glvcerin 20 1257.6
Hydrogen =257.2 F35l
Mercury 10 13571

20 13546
Water Z0 995,32

Table F.5 Properties of some gases at room temperature

GHS T R ':-D
Alr L.40f 28B7.1] 1 005
Helium 1.586 2077 5 ZZ24
Hydrogen| 1.40(4124 14 434
Methane 1.31} 518 2 190
Xenon 1.66 63,3 154

ratio of specific heat at constant pressure to
that at constant volume

gas constant, J/kg.K

specific heat at conmstant pressure, J/kg.K
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Table F.6 Values of the bulk modulus and the vapor pressure of some
common liquids at standard atmospheric pressure

Liquid Tempzrature ﬁziﬁulus }izz;ure
- c_ kTFa 'k Pa
Benzene 20 1 034 250 10.0
Ethyl alcohol 20 {1 206 625 5.86
Glycerin 20 4 343 850 0.000 014
Hydrogen - ENT — 21.4
Mercury E5. 6 26 201 000 0.000 17
dxypen = 195.6 _— 21.4
Water 20 |2 068 500 2.34

Table F.7 Surface tension of some liquids in contact with air, water, or
their own vapours

o SURFACE TENSION

SUBSTANCE ( MN/m )
Benzene-a1t 0,0zZ9
Carbon tetrachleoride-air 0,027
Water-air 0.073
Mercury-air 0. 435
Ethyl alcchol-air 0,022
Glyvcerin-air 0.0063
Fenzene-water 2 0%S
Carbon tetrachloride-water 0,045
MeTcury-water 0375
Benzene vapor 0.029
Carbon tetrachloride wvapor 0. 027
Water wapor 0.073

268



T ] ] L | | I
Unwis J143 _] [ [ I "i“

2| \Hydravlic fluid A _Castor oil.5:0.97 |

§=0.848 at 20 °C
10! A\
B b W e
5 . \\ \_\-
. g
Ny N
- _[Crude oil. s =0. :
0°: s ; “\%L‘O EI?: 5']9‘.?. =
6 ™
* ~.
S T~ Crude oil
*[Water ] s s
07 ; : \xg- —
Banzene —_— Kerosene

| Gasolene. s:0.68 |

10-4 =

Dynamic viscosity p.N s/t or kg/ms

s Xenon proossy
2 o
10-5— Hydrogen ——

|
-40 =20 0O 20 40 8o =0 100 120 180
Temperature ’C

Fig. F.1 Dynamic viscosity of some liguids and gases. Values of specific pravity apply
et abowt 2000



102

8 —
f 4 Glycerine
i LY
\
2l e,
 Fuel oil \§
$ =0.848
10-3 — -
Bt ;
6 e :
4 Uniwvis )= 42 T
- Hydroudlic Hui N
i 5 =0 848
oK : : A\Y
-~ " Olive \), ]
= : e oil g =]
> P 1”& iz N Castor oil ]
:.3 3 N h:_.___ \L\ Fuel oil
> 10-5 S, _.._..._‘,‘:hn..‘_x"‘
st :
E e E"m'-’h;' = Crude oil
@ 2 — “Y__;} S =0.87
w 1076— Eanzeﬂ?ﬂ s . e
o1 i‘%w
4 _ Gosolenéd=—_
$ =048 —— Water _|
2 m— . 3
[ P Freon 12 (sat. liquid} |
e Mal;curYl.____E 1 L | |
50 30

—48 =26 0 20 40 fop 120 140

Temperature i

Fig. F.2 Kinematic viscosity of some lguids of specific gravity apply at about 200C

270



viscosity v, m¥s
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APPENDIX H
NOMENCLATURE

area, m? also a constant (chapter 4)
acceleration, m/sdalso speed of sound, m/s
velocity vector, m/s

magritude of the velocity veclor, m/s
average velocity, m/s

drag coefficient

lift coefficient

skin friction coefficient

specific heat at constant pressure
diameter, m

force, M

drag force, N

lift force, N

momentum, kg m/ss

rate of momentum, N

gravilational acceleration, m/s?
constant height, m

distance of the centre of pressure from one of the coordinates, m
variable height, m

fluid bulk modulus, Pa

constants (1 = 1,2, ... ete.)

ecnfrance length, m

morment, N.om

moment of force in direction x about v-axis
mass, kg

mass flow rate, ke/s

unit vector

static pressure, N/m?

staghation pressure, N/m?

Gas constant, J kg K

Revnolds number

Reynolds number based on the length L
specific gravity
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H

Mot M g e 2 T

temperature, X

time, s

velocity of the wall (chapter 4 only), m/s
velocity of free stream in direction x,m/s
velocity component in the x-direction, m/s
volume, m?

volume flow rate, m3/s

velocity component in the v-direction, m/s,alse specific volume, mike
velocity component in the z-direction, m/s
weight, Work

distance along the x-coordinate, m
distance along the y-coordinate, m
distance along the z-coordinate, m

Greek Letters

B

[ o S
[a ¥

EQ ADTT ¢

b

Subscripts

f

fr

i
isent
isoth

I

st

sum of external forces per unit mass, N/kg,also coefficient of com-
pressibility, m#/M

specific weight, N/m? also, ratio of specific heat at constant pressure to
thal at constant volume for a gas

thickness, also boundary layer thickness, m

displacement thickness of boundary layer, m

angle, degree

kinematic viscosity, m?/s

dynamic viscasity, WNs/m?

density, kg/m?

shear stress, N/m?

coefficient of surface tension

angular velocity of a fluid particle, rad/s

angular speed, rad/s

fluid

free surface

input

isentropic

isothermal

left

manometer

right

output, also stagnation
surface tension



L - -

at wall

in direction x

in dircction ¥

in direction z

location (1) in the fluid
location (2} in the fluid

275



Printad al King Abdulaziz University Press



