الفاعلات بالسطح الفلورية

الفاعلات بالسطح الفلورية (إنگليزية: Per- and polyfluoroalkyl substances، اختصاراً PFASs)، هي مركبات كيميائية فلورية عضوية لديها ذرات فلور متعددة مرتبطة بسلسلة ألكيل. بحسب تعريف مبكر من عام 2011، يلزم أن تحتوي هذه المواد على جزء فاعل بالسطح فلوري واحد على الأقل، –CnF2n+1–.[1][2] بدءاً من عام 2021، مددت منظمة التعاون والتنمية الاقتصادية مصطلحها، حيث أعلنت أن "الفاعلات بالسطح الفلورية معرفة بأنها مواد مفلورة تحتي على ميثيل مفلور كامل واحد على الأقل أو ذرة كربون المثيلين (دون أي ذرة H/Cl/Br/I مرتبطة)، أي، مع استثناءات قليلة ملحوظة، أي مادة كيميائية تحتوي على الأقل على مجموعة ميثيل مشبعة بالفلور (–CF3) أو مجموعة ميثلين مشبعة بالفلور، تعتبر من الفاعلات بالسطح الفلورية."[3][4]

بحسب منظمة التعاون والتنمية الاقتصادية، هناك على الأقل 4.730 مادة مختلفة مصنفة ضمن الفاعلات بالسطح الفلورية، والتي تحتوي على ثلاث ذرات كربون مفلورة على الأقل.[5] قاعدة بيانات السمية بحسب الوكالة الأمريكية لحماية البيئة، DSSTox، تدرج 14.735 مركب كيميائي مختلف من الفاعلات بالسطح الفلورية.[6] وتدرج پب كم 6 مليون مركب كيميائي.[7]


التركيب الهيكلي للفاعلات بالسطح الفلورية.
نموذج ملء الفراغ للفاعلات بالسطح الفلورية.


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

الفاعلات السطحية الفلورية

 
Fluorine-containing durable water repellent makes a fabric water-resistant.

Fluorosurfactants are surfactants containing fluorocarbon chains such as those in PFASs. They can reduce the surface tension of water below what is attainable by using hydrocarbon surfactants.[8] This ability is due to the hydrophobic nature of fluorocarbons, so fluorosurfactants tend to concentrate at the liquid-air interface.[9] Fluorocarbons are lipophobic, as well as hydrophobic, allowing them to repel both oil and water. This lipophobicity results from the lack of attractive London dispersion forces in fluorocarbons compared to hydrocarbons, a consequence of fluorine's large electronegativity and small bond length, which reduce the polarizability of the surfactants' fluorinated molecular surface. Fluorosurfactants are more stable and fit for harsher conditions than hydrocarbon surfactants because of the stability of the carbon–fluorine bond. Perfluorinated surfactants persist in the environment for this same reason.[10]


الدور الاقتصادي

PFASs play a key economic role for companies such as DuPont, 3M, and W. L. Gore & Associates because they are used in emulsion polymerization to produce fluoropolymers. They have two main markets: a $1 billion annual market for use in stain repellents, and a $100 million annual market for use in polishes, paints, and coatings.[11]

مخاطر صحية وبيئية

المخاطر الصحية البشرية المرتبطة

عند طرحهم في الأربعينيات، كانت مواد الفاعلات بالسطح الفلورية تعتبر مواد خاملة.[12][13] في الواقع، كشفت الدراسات المهنية المبكرة عن مستويات مرتفعة من المواد الكيميائية الفلورية، بما في ذلك حمض پيرفلوروأوكتان السلفونيك (سلفونات مشبعة بالفلور أوكتين) وحمض الپيرفلوروكتانويك (PFOA، C8)، في دماء العاملين في المجال الصناعي المتعرضين لتلك المواد، لكن لم تذكر أي آثار صحية سيئة.[14][15] كانت هذه النتائج متسقة مع تركيزات مصل PFOS وPFOA في دماء 3 ملايين من عمال مصنع 3M، تتراوح من 0.04 إلى 10.06 جزء في المليون و0.01 إلى 12.70 جزء في المليون على التوالي، أقل بكثير من المستويات السامة والمسرطنة المذكورة في الدراسات على الحيوانات.[12]

 
آثار التعرض للفاعلات بالسطح الفلورية على صحة البشر.[16][17][18][19][20][21]

المواد الكيمائية المسببة لاضطراب الهرومونات، ومن بينها الفاعلات بالسطح الفلورية، مرتبطة بالتراجع السريع في خصوبة البشر.[22] في تحليل شمولي عن علاقة الفاعلات بالسطح الفلورية والواصمات الحيوية السريرية البشرية بالنسبة لإصابة الكبد، نظر الباحثون في كل من تأثيرات الفاعلات بالسطح الفلورية على المؤشرات الحيوية للكبد والبيانات النسيجية من الدراسات التجريبية على القوارض وخلصوا إلى وجود أدلة تظهر أن PFOA، حمض پيرفلوروهكسان السلفونيك (PFHxS)، وحمض الپيرفلورونونانيك (PFNA) هي مواد سامة على الكبد لدى البشر.[23]

العديد من الدراسات الوبائية الشاملة التي تربط بين الآثار الضارة على صحة الإنسان والفاعلات بالسطح الفلورية، وخاصة PFOA، تأتي من لجنة العلوم C8.[24] تشكلت هذه اللجنة كجزء من دعوى طارئة جماعية رفعتها المجتمعات في وادي نهر أوهايو ضد شركة دوپونت ردًا على مدافن النفايات ومياه الصرف الصحي لمواد محملة بالفاعلات بالسطح الفلورية من مصنع وست ڤرجينيا واشنطن للأشغال التابع لشركة دوپونت .[24] قامت اللجنة بقياس تركيزات مصل PFOA (الذي يُعرف أيضاً باسم C8) لـ69.000 فرد من المصنع وكان متوسط التركيزات 83.0 ن.گ/مل، مقارنة بـ 4 ن.گ/مل بين الشعب الأمريكي.[25] أفادت هذه اللجنة بوجود روابط محتملة بين ارتفاع مستويات[vague] PFOA في الدم وفرط كولسترول الدم، التهاب القولون التقرحي، أمراض الغدة الدرقية، سرطان الخصية، سرطان الكلى وكذلك فرط ضغط الدم أثناء الحمل وتسمم الحمل.[26][27][28][29][30]

صحة المرأة

 
ملابس داخلية للدورة الشهرية من إنتاج شركة ثينكس.

في يناير 2023، نجحت شركة ثينكس للملابس الداخلية بتسوية دعوى قضائية تزعم أن منتجاتها تحتوي على مركبات كيميائية ضارة، مما أثار المزيد من الأسئلة حول سلامة منتجات الدورة الشهرية بشكل عام. الدعوى التي رُفعت منذ عام 2020، تدعي أن منتجات ثينكس تحتوي على مواد كيميائية ضارة، ومن ضمن هذه المواد الفاعلات بالسطح الفلورية، والمواد الكيميائية الباقية للأبد.

تصمم الشركة ملابس داخلية تستخدم في فترة الحيض لتعمل مثل الفوط الصحية التقليدية، لامتصاص الدم، لكنها على عكس الفوط التي تستخدم لمرة واحدة، يمكن غسلها وإعادة استخدامها مرة أخرى. تم الكشف عن وجود الفاعلات بالسطح الفلورية في منتجات ثينكس لأول مرة في يناير 2020، عندما نشرت مجلة سييرا تحقيقا، بالشراكة مع باحث في جامعة نوتردام، وجد هذه المواد الكيميائية في منطقة المنفرج (الجزء السفلي من الحوض) في إحدى القطع الداخلية من إنتاج ثينكس. وتضمنت ثلاث دعاوى قضائية مختلفة على الأقل مرفوعة ضد ثينكس أدلة إضافية من مختبرين تابعين لجهات خارجية على وجود الفاعلات بالسطح الفلورية وسمومأخرى في الملابس الداخلية.

في النهاية، دُمجت عدد من الدعاوى القضائية في قضية واحدة جماعية وتوصلت الشركة إلى تسوية في نهاية عام 2022. في يناير 2023، أصبح بإمكان المستهلكين البدء في التقدم بطلب لاسترداد ما يصل إلى ثلاثة أزواج من الملابس الداخلية ثينكس، مقابل 7 دولارات لكل زوج للأشخاص الذين لا يزالون يحتفظون بإيصالات الشراء و3.50 دولارًا لأولئك الذين ليس لديهم إيصالات. في بيان أرسلته ثينكس لنيويورك تايمز في نهاية يناير 2023، كتبت: "إن الفاعلات بالسطح الفلورية لم تكن أبدًا جزءًا من تصميم منتجاتنا" وأن العلامة التجارية ستتخذ، من الآن فصاعدًا، تدابير لضمان عدم "إضافة المواد الكيميائية إلى منتجاتنا". وكتبت أن التسوية "ليست اعترافاً بالذنب أو الخطأ".

ومع ذلك، فإن جوهر هذه الدعاوى القضائية هو أنه بينما توجد الفاعلات بالسطح الفلورية والسموم البيئية الأخرى في مجموعة واسعة من المنتجات الاستهلاكية، ضللت ثينكس المستهلكين، وقامت بتسويق نفسها كبديل "عضوي ومستدام وغير سام" لمنتجات الدورة الشهرية التقليدية ذات الاستخدام الواحد، بما في ذلك الفوط والسدادات القطنية. جادل المحامون بأن الخداع "يجعل ملابس ثينكس الداخلية عديمة القيمة"، لا سيما في الوقت الذي يسعى فيه عدد متزايد من النساء في فترة الحيض - وخاصة مستهلكي الجيل Z - بشكل استباقي إلى الحصول على منتجات أكثر أمانًا وصديقة للبيئة.[31]

بالنسبة للآباء، أثارت أخبار التسوية مخاوف بشأن مدى أمان منتجات فترة الحيض لبناتهم. قال الدكتور شروثي ماهالينگاياه، باحث الصحة البيئية في جامعة هارڤرد: "لقد اشتريت أيضًا زوجًا من الملابس الداخلية لفترة قصيرة لابنتي". وعلقت كلية تشان للصحة العامة التي تركز على تأثير السموم البيئية على الصحة الإنجابية للمرأة: "البحث عن منتجات آمنة كانت ذات علامة تجارية عضوية وطبيعية أثرت على خيارات الشراء لدينا". وأضافت: "إذا كنت، بصفتي شخصًا ذا خبرة، ما زلت أواجه صعوبات في تحديد ما هو آمن لأطفالي، فلا أظن أنه من الأسهل على أي شخص آخر".

غالبًا ما يطلق على الفاعلات بالسطح الفلورية اسم "المواد الكيميائية الباقية إلى الأبد" لأنها غير قابلة للتدمير عمليًا. منذ أواخر الثلاثينيات، استخدمت هذه المواد الكيميائية في جميع أنواع المنتجات الاستهلاكية تقريبًا، بما في ذلك أواني الطهي والشامبو ومنتجات التنظيف ومستحضرات التجميل، لجعل المنتجات مقاومة للماء أو الزيت أو الحرارة. يمكن أيضًا استخدامها لجعل الملابس مقاومة للماء - وهو ما تدعي الدعوى القضائية أن الملابس الداخلية من ثينكس تمتص دم الدورة الشهرية ولا تزال تشعر بالجفاف.

قال الدكتور ماهالينگاياه إن الفاعلات بالسطح الفلورية قد تلوث أي شيء تلمسه (بما في ذلك الطعام المغلف في عبوات تحتوي على هذه المواد) ولا تتحلل بشكل طبيعي، ولا تستطيع أجسامنا استقلابها. وبدلاً من ذلك، تتراكم في أجسادنا وفي البيئة، وتلوث التربة والهواء والماء.

نظرًا لأن هذه المركبات الكيميائية لا مفر منها، فإن معظم الناس في الولايات المتحدة "لديهم الفاعلات بالسطح الفلورية في دمائهم"، وفقًا لوكالة تسجيل المواد السامة والأمراض.

يشكل التعرض للفاعلات بالسطح الفلورية وتراكمها في الجسم العديد من المخاطر الصحية طويلة الأجل. عام 2017، صنفت الوكالة الدولية لأبحاث السرطان بعض الفاعلات بالسطح الفلورية كمواد مسرطنة محتملة. كما تعطل الفاعلات بالسطح الفلورية الوظائف الهرمونية، وقد أشارت بعض الأبحاث إلى أنها مرتبطة بتقدم عمر المبيض المتسارع، وعدم انتظام الدورة الشهرية، واضطرابات المبيض مثل متلازمة تكيس المبايض.

بالنسبة الحوامل، ارتبطت الفاعلات بالسطح الفلورية بزيادة خطر الإصابة بارتفاع ضغط الدم، أو تسمم الحمل، وتشير بعض الأبحاث إلى أن الأطفال الذين يتعرضون في الرحم يواجهون خطرًا متزايدًا لانخفاض الوزن عند الولادة. ومع ذلك، تحذر مراكز السيطرة على الأمراض والوقاية منها من أن الآثار الصحية للفاعلات بالسطح الفلورية لا تزال "غير مؤكدة" لأن العديد من الدراسات أجريت على حيوانات المختبر التي تتعرض لمستويات PFA "أعلى من الجرعات التي يتعرض لها الأشخاص من التعرض البيئي.

قالت الدكتورة ماريانثي آنا كيومورزوگلو، مهندسة البيئة وعالمة الأوبئة في كلية كولومبيا ميلمان للصحة العامة، إن أحد الاهتمامات الرئيسية بالفاعلات بالسطح الفلورية في منتجات الفترة هو أن منطقة المهبل حساسة للغاية. في الواقع، أظهرت الدراسات أن القناة المهبلية يمكن أن تكون قناة فعالة لتوصيل أدوية معينة إلى مجرى الدم بسبب طبيعتها شديدة الامتصاص.

يقول الدكتور ماهالنگاياه، إن الخبراء قلقون أيضًا بشأن تأثيرات الفاعلات بالسطح الفلورية خلال المراحل التي يكون فيها الجسم ضعيفًا بشكل خاص، مثل عندما تكون المرأة في فترة الدورة الشهرية أو تكون حاملاً أو في مرحلة ما قبل انقطاع الطمث. خلال هذه الأوقات، يخضع الجسم والدماغ لتحولات كبيرة، مما يجعلهما أكثر حساسية تجاه اضطرابات الغدد الصماء. ما هو غير واضح عندما يتعلق الأمر بمنتجات الحيط، ومع ذلك، هو ما إذا كانت الفاعلات بالسطح الفلورية في هذه المنتجات قادرة على التسرب إلى مجرى الدم بتركيزات أعلى مما تفعله عبر المنتجات الأخرى، مثل تغليف المواد الغذائية أو الشامبو. قالة الدكتورة كيومورزوگلو: "الإجابة المختصرة هي أننا لا نعرف لأن هذا موضوع غير مدروس".

من الصعب معرفة ذلك. قالت الدكتورة شارا فوسترال، أستاذة التاريخ في جامعة بوردو التي درست السياسات والتصميم وعمليات الموافقة وراء منتجات الدورة الشهرية، إنه كان هناك "تاريخ طويل من الافتقار إلى الرقابة" عندما يتعلق الأمر بمنتجات الدورة الشهرية. وأضافت: "بشكل عام، لم يتم اختبارها وفهمها بشكل كامل".

على الرغم من أن أكواب الحيض والسدادات القطنية والفوط تعتبر أجهزة طبية، إلا أن إدارة الغذاء والدواء تصنفها على أنها منخفضة أو متوسطة عالية الخطورة. أكدت شركة ثينك أنها سجلت ملابسها الداخلية كجهاز طبي. بسبب التصنيف، لا تخضع هذه المنتجات لاختبارات صارمة، ولا يحتاج المصنعون إلى تصنيف جميع المواد المستخدمة فيها.

قال الدكتور كيومورزوگلو إنه من غير الواضح إذن ما هي منتجات فترة الحيض التي تحتوي على الفاعلات بالسطح الفلورية أو سموم بيئية أخرى، بالإضافة إلى تركيز السموم في تلك المنتجات ومقدار امتصاصها من قبل الجسم. وفي الوقت نفسه، وجدت الدراسات التي تمت مراجعتها من قبل الأقران لهذه المنتجات نتائج غير متسقة. فحص تحليل حديث أجراه الدكتور كيومورزوگلو والعديد من الزملاء ما يقرب من عشرين دراسة. وجدت بعض الدراسات كميات كبيرة من مجموعة من السموم في منتجات الفترة ، بينما وجدت دراسات أخرى كميات ضئيلة فقط تمثل "خطرًا منخفضًا على الصحة"، مما دفع المؤلفين إلى استنتاج أن هناك حاجة إلى مزيد من البحث.

عندما يتعلق الأمر بالملابس الداخلية الخاصة بلدورة الشهرية، يقترح بعض الخبراء أن غسل هذه الملابس مرة بعد مرة قد يعمل على التخلصمن الفاعلات بالسطح الفلورية، لكن لا يوجد بحث علمي يؤكد ذلك. ولم تنظر الدراسات على وجه التحديد في ما إذا كان الجسم يمتص الفاعلات بالسطح الفلورية الموجودة في الملابس الداخلية الخاصة بالحيض، حتى أن دعوى ثينكس القضائية كانت تركز على تسويقها وليس حول أي مشكلات صحية قد يواجهها المستهلكون. ومع ذلك، لم تصمم جميع الملابس الداخلية بنفس الطريقة. حدد التحقيق الأصلي الذي أجرته مجلة سييرا ومختبرو المنتجات الآخرون بعض العلامات التجارية التي يزعمون أنها خالية من السموم.

يقترح الخبراء أيضًا استخدام أكواب الدورة الشهرية المصنوعة من السيليكون الطبي، والتي قال الدكتور ماهالينگايا إنها من المحتمل أن تكون "خاملة". وأضاف: "آمل أن نرى ابتكارات وأنواع جديدة من المنتجات القائمة على السيليكون".


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

تواجدها في مياه الأمطار

In 2022 it was found that levels of at least four perfluoroalkyl acids (PFAAs) in rainwater worldwide ubiquitously, and often greatly, exceeded the EPA's lifetime drinking water health advisories as well as comparable Danish, Dutch, and European Union safety standards, leading researchers to conclude that "the global spread of these four PFAAs in the atmosphere has led to the planetary boundary for chemical pollution being exceeded".[32] There are some moves to restrict and replace their use.[33]

تقدير التكاليف المعاصرة

In a report by the Nordic Council of Ministers the total annual health-related costs associated with human exposure to PFASs were estimated to be at least €52-€84 billion in the European Economic Area (EEA) countries.[34] For the United States, estimated PFAS-attributable disease costs amount to 6–62 billion US$.[35] Aggregated annual costs covering environmental screening, monitoring where contamination is found, water treatment, soil remediation and health assessment total €821 million-€170 billion in the EEA plus Switzerland.[34]

الآليات المقترحة للنتائج الصحية الضارة المرتبطة

فرط كولسترول الدم

Animal studies in the 1990s and early 2000s primarily aimed to investigate the effect of two widely used long-chain PFASs, perfluorooctanoic acid (PFOA, C8) and perfluorooctane sulphonic acid (PFOS, C8), on peroxisome proliferation in rat livers.[36] These studies determined that PFOA and PFOS acted as peroxisome proliferator-activated receptor (PPAR) agonists, increasing lipid metabolism.[36] A paradoxical response is observed in humans where elevated PFOS levels were significantly associated with[vague] elevated total cholesterol and LDL cholesterol, highlighting significantly reduced PPAR expression and alluding to PPAR independent pathways predominating over lipid metabolism in humans compared to rodents.[37]

التهاب القولون التقرحي

PFOA and PFOS have been shown to significantly alter immune and inflammatory responses in human and animal species. In particular, IgA, IgE (in females only) and C-reactive protein have been shown to decrease whereas antinuclear antibodies increase as PFOA serum concentrations increase.[38] These cytokine variations allude to immune response aberrations resulting in autoimmunity. One proposed mechanism is a shift towards anti-inflammatory M2 macrophages and/or T-helper (TH2) response in intestinal epithelial tissue which allows sulfate-reducing bacteria to flourish. Elevated levels of hydrogen sulfide result which reduce beta-oxidation and thus nutrient production leading to a breakdown of the colonic epithelial barrier.[39]

أمراض الغدة الدرقية

Hypothyroidism is the most common thyroid abnormality associated with[vague] PFAS exposure.[40] PFASs have been shown to decrease thyroid peroxidase, resulting in decreased production and activation of thyroid hormones in vivo.[41] Other proposed mechanisms include alterations in thyroid hormone signaling, metabolism and excretion as well as function of nuclear hormone receptor.[40]

السرطان

Rat studies investigating the carcinogenicity of PFASs reported significant correlation with liver adenomas, Leydig cell tumors of the testis and pancreatic acinar cell tumors and dietary PFOA consumption.[41] The C8 Science Panel investigated the potential relationship between PFAS exposure and these three cancer types as well as 18 other cancer types in their epidemiological studies. Contrary to the animal studies, the C8 studies did not find a probable link[vague] between elevated C8 exposure and liver adenomas or pancreatic acinar cell tumors; however, a probable link[vague] was found with regards to testis and kidney cancer.[42] Two mechanisms have been proposed by which PFOA could cause Leydig cell tumors. Both mechanisms start by proposing that PROA exposure results in increased PPAR alpha activation in the liver which increases hepatic aromatase concentration and subsequent serum estrogen levels. The mechanisms now diverge, with one pathway suggesting elevated estradiol levels increase Tissue Growth Factor alpha (TGF alpha) which prompts Leydig cell proliferation. The other pathway suggests that aromatization of testosterone to estradiol reduces serum testosterone levels resulting in increased release of luteinizing hormone (LH) from the pituitary gland which directly results in Leydig Cell tumorgenesis.[43] A mechanism has not yet been proposed to explain how kidney cancer could be caused by C8 exposure as no in vivo animal studies have been able to model this epidemiological outcome.[44]

ارتفاع ضغط الدم الناجم عن الحمل وتسمم الحمل

Pregnancy-induced hypertension is diagnosed when maternal systolic blood pressure exceeds 140 mmHg or diastolic blood pressure exceeds 90mmHg after 20 weeks gestation.[45] Diagnostic criteria are the same for pre-eclampsia as pregnancy-induced hypertension; however, it also confers proteinuria. Mechanisms by which pregnancy-induced hypertension and preeclampsia could be caused by PFAS exposure have remained elusive and are largely speculative to date. One proposed mechanism highlights alterations in immune function leading to disruption of placentation, specifically as it pertains to natural killer (NK) cell infiltration of the placenta to facilitate trophoblastic integration with placental blood supply.[46] Another mechanism refers to agonism of PPARs contributing to alterations in cholesterol, triglyceride and uric acid levels which may lead to vascular inflammation and elevated blood pressure.[46]

Other adverse health outcomes that have been attributed to elevated PFAS exposure but were not found to be probable links[vague] in the C8 studies are decreased antibody response to vaccines, asthma, decreased mammary gland development, low birth weight (-0.7oz per 1 ng/mL increase in blood PFOA or PFOS level), decreased bone mineral density and neurodevelopmental abnormalities.[47][48][49]

المواد الكيميائية الباقية إلى الأبد

Fluorosurfactants such as PFOS, PFOA, and PFNA have caught the attention of regulatory agencies because of their persistence, toxicity, and widespread occurrence in the blood of general populations[50][51] and wildlife. In 2009, PFOS, its salts and perfluorooctanesulfonyl fluoride were listed as persistent organic pollutants under the Stockholm Convention, due to their ubiquitous, persistent, bioaccumulative, and toxic nature.[52][53] PFAS chemicals were dubbed the "Forever Chemicals" following a 2018 op-ed in the Washington Post.[54] The nickname was derived by combining the two dominant attributes of this class of chemicals: 1) PFAS chemicals are characterized by a carbon-fluorine (C-F) backbone (the "F-C" in "Forever Chemicals"); and 2) the carbon fluorine bond is one of the strongest bonds in organic chemistry, which gives these chemicals an extremely long environmental half-life (the "Forever" in "Forever Chemicals"). The Forever Chemicals name is now commonly used in media outlets in addition to the more technical name of per- and polyfluorinated alkyl substances, or PFASs.[55][56][57][58] Their production has been regulated or phased out by manufacturers, such as 3M, DuPont, Daikin, and Miteni in the US, Japan, and Europe. In 2006 3M replaced PFOS and PFOA with short-chain PFASs,[11] such as perfluorohexanoic acid (PFHxA) and perfluorobutanesulfonic acid (PFBS). Shorter fluorosurfactants may be less prone to accumulating in mammals;[11] there is still concern that they may be harmful to both humans,[59][60][61] and the environment.[62] A majority of PFASs are either not covered by European legislation or are excluded from registration obligations under the EU REACH chemical regulation.[63] Several PFASs have been detected in drinking water,[64] municipal wastewater[65] and landfill leachates,[66] worldwide.

It had been thought that perfluoroalkyl acids (PFAAs) would eventually end up in the oceans, where they would be diluted over decades, but a field study published in 2021 by researchers at Stockholm University found that they are significantly transferred from water to air when waves break on land, and are a significant source of air pollution, and eventually get into the rain. The researchers concluded that pollution "may impact large areas of inland Europe and other continents, in addition to coastal areas".[67][68]


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

التراكم الأحيائي والتضخم الأحيائي

 
Bioaccumulation of PFAS: PFASs from sediments and water can accumulate in marine organisms. Animals higher up the food chain accumulate more PFAS because they absorb PFAS in prey they consume.

Bioaccumulation is the process by which PFASs are transferred into the tissue of any exposed organisms where PFASs accumulate over time since organisms lack natural excretion mechanisms. PFASs can accumulate in marine species by a variety of pathways. They can be absorbed from the environment, such as contaminated sediments or PFASs dissolved in water. PFASs can partition into the organs and tissues of marine organisms from these environmental compartments. They have been shown to bind to blood proteins and accumulate in the livers of marine animals.[69] Another pathway for bioaccumulation is predation. As larger marine animals feed on smaller organisms that have been exposed to PFASs, the larger animals absorb the PFASs contained in their prey.

 
Biomagnification is the build up of toxins in a food chain. As the trophic level increases in a food chain, the amount of toxic build up increases. The x's represent the amount of toxic build up accumulating as the trophic level increases. Toxins build up in organism's fat and tissue. Predators accumulate higher toxins than prey as a result of bioaccumulation.

Biomagnification is the process by which the amount of PFAS contamination increases with increasing trophic level, due to predation by the species higher in the food web. Top predators have higher levels of PFASs than species lower down the food chain. Seabirds that feed on fish have among the highest levels of PFAS contamination.[69] Perfluorosulfonic acids, which have a sulfonic acid functional group attached to the fluorinated "tail", have a greater tendency to bioaccumulate than perfluorocarboxylic acids, which contain a carboxylic acid function group. Longer chain PFAS compounds, which have 6, 7, or more fluorinated carbons, bioaccumulate in greater quantities than shorter chain PFAS compounds. The concentration of PFOS, a long chain sulfonic acid, was found at the highest concentrations relative to other PFASs measured in fish and birds in Northern seas such as the Barents Sea and the Canadian Arctic.[70]

Bioaccumulation and biomagnification of PFASs in marine species throughout the food web, particularly frequently consumed fish and shellfish, can have important impacts on human populations.[71] PFASs have been frequently documented in both fish and shellfish that are commonly consumed by human populations.[72] This poses health risks to humans and studies on the bioaccumulation in certain species are important to determine daily tolerable limits for human consumption, and where those limits may be exceeded causing potential health risks.[73] This has particular implications for populations that consume larger numbers of wild fish and shellfish species.[72] In addition to health risks, populations may be impacted by advisories, limits of closures of fishing for certain species that are put in place to help mitigate health risks from potential consumption of species with higher levels of accumulated PFASs, but result in a lost of food sources and important subsistence species depended on by local communities. There is much research being done in this area, including into spatial patterns of PFAS bioaccumulation in fish and crustaceans[74] but more research is also needed. There is a need for more research on membrane transport mechanisms, which transfer PFAS into marine organisms, and the biological behavior of shorter chain PFASs.[75]

أستراليا

كندا

المملكة المتحدة

إيطاليا

الولايات المتحدة

 
قد يحتوي أحمر الشفاة السائل على الفاعلات بالسطح الفلورية.



الدعاوى القضائية الجماعية

In February 2017, DuPont and Chemours (a DuPont spin-off) agreed to pay $671 million to settle lawsuits arising from 3,550 personal injury claims related to releasing of PFASs from their Parkersburg, West Virginia plant, into the drinking water of several thousand residents.[76] This was after a court-created independent scientific panel, the "C8 Science Panel", found a "probable link" between C8 exposure and six illnesses: kidney and testicular cancer, ulcerative colitis, thyroid disease, pregnancy-induced hypertension and high cholesterol.[24][77]

In October 2018, a class action suit was filed by an Ohio firefighter against several producers of fluorosurfactants, including the 3M and DuPont corporations, on behalf of all US residents who may have adverse health effects from exposure to PFASs.[78]

This story is told in the film Dark Waters, released in November 2019, produced by the actor Mark Ruffalo and directed by Todd Haynes.[79]

تكتم الشركات والحكومات الفدرالية على المعلومات

Starting in the 1970s, 3M scientists learned that PFOS and PFOA were toxic to humans, documenting damage to the human immune system. Also in the 1970s, 3M scientists found that these substances accumulate over time in the human body. However, 3M suppressed revelation of these facts to the public or to regulators.[80]

In 2018 White House staff and EPA pressured the U.S. Agency for Toxic Substances and Disease Registry to suppress a study that showed PFASs to be even more dangerous than previously thought.[81][82]

تلوث المياه من القواعد العسكرية الأمريكية

The water in and around at least 126 U.S. military bases has been contaminated by high levels of PFASs because of their use of firefighting foams since the 1970s, according to a study by the U.S. Department of Defense. Of these, 90 bases reported PFAS contamination that had spread to drinking water or groundwater off the base.[83][84] A 2022 Pentagon report acknowledged that approximately 175,000 U.S. military personnel at two dozen American military facilities drank water contaminated by higher PFAS levels than the U.S. Environmental Protection Agency limit. However, according to an analysis of the Pentagon report by the non-partisan Environmental Working Group, the Pentagon report downplayed the number of people exposed to PFAS, which was much higher, probably in excess of 640,000 at 116 military facilities, than the number advanced by the Pentagon report. The EWG found that the Pentagon also omitted from its report some types of diseases that are likely to be caused by EWG exposure, omitting testicular cancer, kidney disease, and fetal abnormalities.[85]

التعرض المهني

Occupational exposure to PFASs occurs in numerous industries due to the widespread use of PFASs in products and as an element of industrial process streams.[17] PFASs are used in more than 200 different ways in industries as diverse as electronics and equipment manufacturing, plastic and rubber production, food and textile production, and building and construction.[86] Occupational exposure to PFASs can occur at fluorochemical facilities that produce PFASs and other manufacturing facilities that use PFASs for industrial processing like the chrome plating industry.[17] Workers who handle PFAS-containing products can also be exposed during their work. Examples include people who install PFAS-containing carpets and leather furniture with PFAS coatings, professional ski-waxers using PFAS-based waxes, and fire-fighters who use PFAS-containing foam and wear flame-resistant protective gear impregnated with PFASs.[17][87][88][89][90]

People who are exposed to PFASs through their jobs typically have higher levels of PFASs in their blood than the general population.[17][88][89][91][92] Additionally, while the general population is exposed to PFASs through ingested food and water, occupational exposure includes both accidental ingestion and inhalation exposure in settings where a PFAS becomes volatilized.[93] There has been increased attention to the health risks associated with exposure to PFASs, which can affect the immune system, increase cholesterol, and increase the risk of cancer.[47] The severity of PFAS-associated health effects can vary based on the length of exposure, level of exposure, and health status.[17] In 2009, under decision SC-4/17, perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride were listed in Annex B of the 2009 Stockholm Convention on Persistent Organic Pollutants, dictating acceptable purposes and specific exemptions to the chemical usage. Among these exemptions are numerous uses in manufacturing as well as firefighting foams.

تقنيو شمع التزلج المحترفون

Professional ski wax technicians are disproportionately exposed to PFASs from the glide wax used to coat the bottom of skis to reduce the friction between the skis and snow. During this process, the wax is heated to 130-220 °C, which releases fumes and airborne fluorinated compounds. Exposure to aerosolized PFASs is associated with alveolic edema, polymer fume fever, severe dyspnea, decreased pulmonary function, and respiratory distress syndrome in those chronically exposed.[88] In a 2010 study, blood serum levels of PFOA were significantly higher in ski wax technicians compared to levels of the general Swedish population. Serum levels of PFOA in ski wax technicians were positively correlated with years spent working, suggesting bioaccumulation of PFOA over time.[88]

عمال التصنيع

People who work at fluorochemical production plants and in manufacturing industries that use PFASs in the industrial process can be exposed to PFASs in the workplace. Much of what we know about PFASs exposure and health effects began with medical surveillance studies of workers exposed to PFASs at fluorochemical production facilities. These studies began in the 1940s and were conducted primarily at U.S. and European manufacturing sites. Between the 1940s and 2000s, thousands of workers exposed to PFASs participated in research studies that advanced scientific understanding of exposure pathways, toxicokinetic properties, and adverse health effects associated with exposure.[14][94][95][15][96][97][98][99][100][101][102][103][104]

The first research study to report elevated organic fluorine levels in the blood of fluorochemical workers was published in 1980.[14] This study established inhalation as a potential route of occupational PFAS exposure by reporting measurable levels of organic fluorine in air samples at the facility.[14] Workers at fluorochemical production facilities have higher levels of PFOA and PFOS in their blood than the general population. Serum PFOA levels in fluorochemical workers are generally below 20,000 ng/mL but have been reported as high as 100,000 ng/mL whereas the mean PFOA concentration among non-occupationally exposed cohorts in the same time frame was 4.9 ng/mL.[101][15][105][106][107][108][109][110][111][112] Among fluorochemical workers, those with direct contact with PFASs have higher PFAS concentrations in their blood than those with intermittent contact and those with no direct PFAS contact.[14][94][101] Further, blood PFAS levels decline when direct contact ceases.[101][96][98] Levels of PFOA and PFOS have declined in US and European fluorochemical workers due to improved facilities, increased usage of personal protective equipment, and the phase out of these chemicals from production.[94][102][104] However, occupational exposure to PFASs in manufacturing continues to be an active area of study in China with numerous investigations linking worker exposure to various PFASs.[113][114][115][116][117]

إطفاء الحرائق

 
رجال المطافي يستخدمون رغوة التشكيل الغشائية (AFFF).

PFASs are commonly used in Class B firefighting foams due to their hydrophobic and lipophobic properties as well as the stability of the chemicals when exposed to high heat.[118] Due to firefighters' potential for exposure to PFASs through these aqueous film forming foams (AFFF), studies raise concerns that firefighters are especially prone to high concentrations of serum PFASs.

Research into occupational exposure for firefighters is emergent, though frequently limited by underpowered study designs. A 2011 cross-sectional analysis of the C8 Health Studies found higher levels of PFHxS in firefighters compared to the sample group of the region, with other PFASs at elevated levels, without reaching statistical significance.[119] A 2014 study in Finland studying eight firefighters over three training sessions observed select PFASs (PFHxS and PFNA) increase in blood samples following each training event.[118] Due to this small sample size, a test of significance was not conducted. A 2015 cross-sectional study conducted in Australia found  that accumulation of PFOS and PFHxS was positively associated with years of occupational AFFF exposure through firefighting.[89]

Due to their use in training and testing, recent studies indicate occupational risk for military members and firefighters, as higher levels of PFASs in exposure were indicated in military members and firefighters when compared to the general population.[120] Further, exposure to PFASs is prevalent among firefighters not only due to its use in emergencies but because it is also used in personal protective equipment. In support of these findings, states like Washington and Colorado have moved to restrict and penalize the use of Class B firefighting foam which contains PFASs for firefighter training and testing.[121][122]

التعرض لهجمات إرهابية بعد مركز التجارة العالمي

The September 11, 2001 collapse of the World Trade Center buildings in New York City resulted in the release of chemicals from the destruction of construction and electrical material and long-term chemical fires. This collapse caused the release of several toxic chemicals, including fluorinated surfactants used as soil- and stain-resistant coatings on various materials.[123] First responders to this incident were exposed to PFOA, PFNA, and PFHxS, through inhalation of dust and smoke released during and after the collapse of the World Trade Center.[123]

Fire responders who were working at or near ground zero were assessed for respiratory and other health effects from exposure to emissions at the World Trade Center. Early clinical testing showed a high prevalence of respiratory health effects. Early symptoms of exposure often presented with persistent coughing and wheezing. PFOA and PFHxS levels were present in both smoke and dust exposure. Yet, first responders with smoke exposures had higher concentrations of PFOA and PFHxS than those with dust exposures.[123]

حلول المعالجة

معالجة المياه

Several technologies are currently available for remediating PFASs in liquids. These technologies can be applied to drinking water supplies, groundwater, industrial wastewater, surface water, and other miscellaneous applications (such as landfill leachate). Influent concentrations of PFASs can vary by orders of magnitude for specific media or applications. These influent values, along with other general water quality parameters (for example, pH) can influence the performance and operating costs of the treatment technologies. The technologies are:

Private and public sector applications of one or more of these methodologies above are being applied to remediation sites throughout the United States and other international locations.[126] Most solutions involve on-site treatment systems, while others are leveraging off-site infrastructure and facilities, such as a centralized waste treatment facility, to treat and dispose of the PFAS pool of compounds.

Most recently, a 2022 study published in the Journal of Environmental Engineering found that a heat-and pressure-based technique known as supercritical water oxidation destroyed 99% of the PFASs present in a water sample. During this process, oxidizing substances are added to PFAS-contaminated water and then the liquid is heated above its critical temperature of 374 degrees Celsius at a pressure of more than 220 bars. The water becomes supercritical (being neither gas nor liquid), and, in this state, water-repellent substances such as PFASs dissolve much more readily.[125]

الحلول النظرية والمبكرة

The Michigan State University-Fraunhofer team has a viable solution to treat PFAS-contaminated wastewater that, in 2018, was reported to be ready for a pilot-scale investigation. The electrochemical oxidation system used boron-doped diamond electrodes, in a process breaking down the contaminants' formidable molecular bonds and cleaning the water while systematically destroying the hazardous compounds.[127]

"EO, or electrochemical oxidation, is a simple, clean, and effective method for destruction of PFASs and other co-contaminants as a complementary procedure to other wastewater treatment processes," said Cory Rusinek, an electrochemist at MSU-Fraunhofer. "If we can remove it from wastewater, we can reduce its occurrence in surface waters."[127]

In September 2019, it was reported Acidimicrobium sp. strain A6 could be a potential remediator of PFAS, including saturated ones such as PFOS.[128] PFAS with unsaturated bonds are easier to break down: the commercial dechlorination culture KB1 (contains Dehalococcoides) is capable of breaking down such substances, but not saturated PFAS. When alternative, easier-to-digest substrates are present, microbes may prefer them over PFAS.[129]

المعالجة الكيميائية

A study published in the journal Science in August 2022 indicated that perfluoroalkyl carboxylic acids (PFCAs) are able to be "mineralized" via heating in a polar aprotic solvent such as dimethyl sulfoxide. The study reported that heating PFCAs in an 8 to 1 mixture of dimethyl sulfoxide and water at 80–120 °C (176–248 °F) in the presence of sodium hydroxide, caused the removal of the carboxylic acid group at the end of the carbon chain, creating a perfluoroanion. The perfluoroanion then "mineralizes" into sodium fluoride and other salts such as sodium trifluoroacetate, formate, carbonate, oxalate and glycolate. The process does not work on perfluorosulfonic acids such as PFOS.[130] A more recent study published in Chemical Science shows breakdown of C-F bonds and their mineralization as YF3 or YF6 clusters.[131] Another study in the Journal of the American Chemical Society described the PFAs breakdown using metal-organic frameworks (MOFs).[132]

مثال على المواد الكيميائية

Some common per- and polyfluoroalkyl substances:[133][134]

Name Abbreviation Structural formula Molecular weight (g/mol) CAS No.
Perfluorobutane sulfonamide H-FBSA C4F9SO2NH2 299.12 30334-69-1
Perfluoropentanesulfonamide PFPSA C5F11SO2NH2 349.12 82765-76-2
Perfluorohexanesulfonamide PFHxSA C6F13SO2NH2 399.13 41997-13-1
Perfluoroheptanesulfonamide PFHpSA C7F15SO2NH2 449.14 82765-77-3
Perfluorooctanesulfonamide PFOSA C8F17SO2NH2 499.14 754-91-6
Perfluorobutanesulfonyl fluoride PFBSF C4F9SO2F 302.09 375-72-4
Perfluorooctanesulfonyl fluoride PFOSF C8F17SO2F 502.12 307-35-7

السينما

انظر أيضاً

المصادر

  1. ^ Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, et al. (October 2011). "Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins". Integrated Environmental Assessment and Management. 7 (4): 513–41. doi:10.1002/ieam.258. PMC 3214619. PMID 21793199.
  2. ^ Ritscher A, Wang Z, Scheringer M, Boucher JM, Ahrens L, Berger U, et al. (August 2018). "Zürich Statement on Future Actions on Per- and Polyfluoroalkyl Substances (PFASs)". Environmental Health Perspectives. 126 (8): 84502. doi:10.1289/EHP4158. PMC 6375385. PMID 30235423.
  3. ^ OECD (2021). "Reconciling Terminology of the Universe of Per- and Polyfluoroalkyl Substances: Recommendations and Practical Guidance" (PDF). OECD Series on Risk Management. Paris: OECD Publishing. p. 23. Archived from the original (PDF) on 13 July 2021.
  4. ^ Wang Z, Buser AM, Cousins IT, Demattio S, Drost W, Johansson O, et al. (December 2021). "A New OECD Definition for Per- and Polyfluoroalkyl Substances". Environmental Science & Technology. 55 (23): 15575–15578. Bibcode:2021EnST...5515575W. doi:10.1021/acs.est.1c06896. PMID 34751569. S2CID 243861839.
  5. ^ Toward a New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances (PFASs): Summary Report on Updating the OECD 2007 List of Per- and Polyfluoroalkyl Substances (PFASs). Series on Risk Management No. 39. OECD. Archived from the original. You must specify the date the archive was made using the |archivedate= parameter. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV-JM-MONO(2018)7&doclanguage=en. Retrieved on December 9, 2019. 
  6. ^ "PFAS structures in DSSTox (update August 2022)". CompTox Chemicals Dashboard. Washington, D.C.: U.S. Environmental Protection Agency (EPA). Retrieved 2022-10-21.{{cite web}}: CS1 maint: url-status (link) "List consists of all DTXSID records with a structure assigned, and using a set of substructural filters based on community input."
  7. ^ "PubChem Classification Browser – PFAS and Fluorinated Compounds in PubChem Tree". pubchem.ncbi.nlm.nih.gov. NBCI. Retrieved 2022-10-21.
  8. ^ Salager JL (2002). "Surfactants-Types and Uses" (PDF). FIRP Booklet # 300-A. Universidad de los Andes Laboratory of Formulation, Interfaces Rheology, and Processes. p. 45. Archived (PDF) from the original on July 31, 2020. Retrieved 2008-09-07.
  9. ^ "Fluorosurfactant — Structure / Function". Mason Chemical Company. 2007. Archived from the original on 2008-07-05. Retrieved 2008-11-01.
  10. ^ خطأ استشهاد: وسم <ref> غير صحيح؛ لا نص تم توفيره للمراجع المسماة Houde_200606
  11. ^ أ ب ت Renner R (January 2006). "The long and the short of perfluorinated replacements". Environmental Science & Technology. 40 (1): 12–3. Bibcode:2006EnST...40...12R. doi:10.1021/es062612a. PMID 16433328.
  12. ^ أ ب "Guide to PFAS in our environment debuts". C&EN Global Enterprise. 97 (21): 12. 2019-05-27. doi:10.1021/cen-09721-polcon2. ISSN 2474-7408. S2CID 199655540.
  13. ^ "Preliminary Lists of PFOS, PFAS, PFOA and Related Compounds and Chemicals that May Degrade to PFCA". OECD Papers. 6 (11): 1–194. 2006-10-25. doi:10.1787/oecd_papers-v6-art38-en. ISSN 1609-1914.
  14. ^ أ ب ت ث ج Ubel FA, Sorenson SD, Roach DE (August 1980). "Health status of plant workers exposed to fluorochemicals--a preliminary report". American Industrial Hygiene Association Journal. 41 (8): 584–9. doi:10.1080/15298668091425310. PMID 7405826.
  15. ^ أ ب ت Olsen GW, Burris JM, Burlew MM, Mandel JH (March 2003). "Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations and medical surveillance examinations". Journal of Occupational and Environmental Medicine. 45 (3): 260–70. doi:10.1097/01.jom.0000052958.59271.10. PMID 12661183. S2CID 11648767.
  16. ^ "Emerging chemical risks in Europe — 'PFAS'". European Environment Agency. 2019. Archived from the original on February 6, 2020.
  17. ^ أ ب ت ث ج ح "Toxicological profile for Perfluoroalkyls". Agency for Toxic Substances and Disease Registry. 2018. Archived from the original on May 12, 2021.
  18. ^ "Some Chemicals Used as Solvents and in Polymer Manufacture". IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 110. 2016. Archived from the original on March 24, 2020.
  19. ^ Barry V, Winquist A, Steenland K (2013). "Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant". Environmental Health Perspectives. 121 (11–12): 1313–8. doi:10.1289/ehp.1306615. PMC 3855514. PMID 24007715.
  20. ^ Fenton SE, Reiner JL, Nakayama SF, Delinsky AD, Stanko JP, Hines EP, et al. (June 2009). "Analysis of PFOA in dosed CD-1 mice. Part 2. Disposition of PFOA in tissues and fluids from pregnant and lactating mice and their pups". Reproductive Toxicology. 27 (3–4): 365–372. doi:10.1016/j.reprotox.2009.02.012. PMC 3446208. PMID 19429407.
  21. ^ White SS, Stanko JP, Kato K, Calafat AM, Hines EP, Fenton SE (August 2011). "Gestational and chronic low-dose PFOA exposures and mammary gland growth and differentiation in three generations of CD-1 mice". Environmental Health Perspectives. 119 (8): 1070–6. doi:10.1289/ehp.1002741. PMC 3237341. PMID 21501981.
  22. ^ Swan SH, Colino S (February 2021). Count down: how our modern world is threatening sperm counts, altering male and female reproductive development, and imperiling the future of the human race. New York, USA: Scribner. ISBN 978-1-9821-1366-7.
  23. ^ Costello E, Rock S, Stratakis N, Eckel SP, Walker DI, Valvi D, et al. (April 2022). "Exposure to per- and Polyfluoroalkyl Substances and Markers of Liver Injury: A Systematic Review and Meta-Analysis". Environmental Health Perspectives. 130 (4): 46001. doi:10.1289/EHP10092. PMC 9044977. PMID 35475652.
  24. ^ أ ب ت "C8 Science Panel". www.c8sciencepanel.org. Archived from the original on June 18, 2019. Retrieved June 8, 2019.
  25. ^ Steenland K, Jin C, MacNeil J, Lally C, Ducatman A, Vieira V, Fletcher T (July 2009). "Predictors of PFOA levels in a community surrounding a chemical plant". Environmental Health Perspectives. 117 (7): 1083–8. doi:10.1289/ehp.0800294. PMC 2717134. PMID 19654917.
  26. ^ "Probable Link Evaluation for heart disease (including high blood pressure, high cholesterol, coronary artery disease)" (PDF). C8 Science Panel. 29 October 2012.
  27. ^ "Probable Link Evaluation of Autoimmune Disease" (PDF). C8 Science Panel. 30 July 2012.
  28. ^ "Probable Link Evaluation of Thyroid disease" (PDF). C8 Science Panel. 30 July 2012.
  29. ^ "Probable Link Evaluation of Cancer" (PDF). C8 Science Panel. 15 April 2012.
  30. ^ "Probable Link Evaluation of Pregnancy Induced Hypertension and Preeclampsia" (PDF). C8 Science Panel. 5 December 2011.
  31. ^ "What to Know About PFAS in Period Underwear". نيويورك تايمز. 2023-01-23. Retrieved 2023-01-23.
  32. ^ Cousins IT, Johansson JH, Salter ME, Sha B, Scheringer M (August 2022). "Outside the Safe Operating Space of a New Planetary Boundary for Per- and Polyfluoroalkyl Substances (PFAS)". Environmental Science & Technology. American Chemical Society. 56 (16): 11172–11179. Bibcode:2022EnST...5611172C. doi:10.1021/acs.est.2c02765. PMC 9387091. PMID 35916421.
  33. ^ "Pollution: 'Forever chemicals' in rainwater exceed safe levels". BBC News. 2 August 2022. Retrieved 14 September 2022.
  34. ^ أ ب "Nordic Council of Ministers (2019). The cost of inaction. A socioeconomic analysis of environmental and health impacts linked to exposure" (PDF). Archived (PDF) from the original on October 1, 2019. Retrieved October 1, 2019.
  35. ^ Obsekov V, Kahn LG, Trasande L (2022-07-26). "Leveraging Systematic Reviews to Explore Disease Burden and Costs of Per- and Polyfluoroalkyl Substance Exposures in the United States". Exposure and Health (in الإنجليزية). doi:10.1007/s12403-022-00496-y. ISSN 2451-9766. S2CID 251072281.
  36. ^ أ ب Hosokawa M, Satoh T (October 1993). "Differences in the induction of carboxylesterase isozymes in rat liver microsomes by perfluorinated fatty acids". Xenobiotica; the Fate of Foreign Compounds in Biological Systems. 23 (10): 1125–33. doi:10.3109/00498259309059427. PMID 8259694.
  37. ^ DeWitt JC, Shnyra A, Badr MZ, Loveless SE, Hoban D, Frame SR, et al. (8 January 2009). "Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha". Critical Reviews in Toxicology. 39 (1): 76–94. doi:10.1080/10408440802209804. PMID 18802816. S2CID 96896603.
  38. ^ DeWitt JC, Peden-Adams MM, Keller JM, Germolec DR (22 November 2011). "Immunotoxicity of perfluorinated compounds: recent developments". Toxicologic Pathology. 40 (2): 300–11. doi:10.1177/0192623311428473. PMID 22109712. S2CID 35549835.
  39. ^ Steenland K, Zhao L, Winquist A, Parks C (August 2013). "Ulcerative colitis and perfluorooctanoic acid (PFOA) in a highly exposed population of community residents and workers in the mid-Ohio valley". Environmental Health Perspectives. 121 (8): 900–5. doi:10.1289/ehp.1206449. PMC 3734500. PMID 23735465.
  40. ^ أ ب Lee JE, Choi K (March 2017). "Perfluoroalkyl substances exposure and thyroid hormones in humans: epidemiological observations and implications". Annals of Pediatric Endocrinology & Metabolism. 22 (1): 6–14. doi:10.6065/apem.2017.22.1.6. PMC 5401824. PMID 28443254.
  41. ^ أ ب Song M, Kim YJ, Park YK, Ryu JC (August 2012). "Changes in thyroid peroxidase activity in response to various chemicals". Journal of Environmental Monitoring. 14 (8): 2121–6. doi:10.1039/c2em30106g. PMID 22699773.
  42. ^ Barry V, Winquist A, Steenland K (2013). "Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant". Environmental Health Perspectives. 121 (11–12): 1313–8. doi:10.1289/ehp.1306615. PMC 3855514. PMID 24007715.
  43. ^ Klaunig JE, Hocevar BA, Kamendulis LM (July 2012). "Mode of Action analysis of perfluorooctanoic acid (PFOA) tumorigenicity and Human Relevance". Reproductive Toxicology. 33 (4): 410–418. doi:10.1016/j.reprotox.2011.10.014. PMID 22120428.
  44. ^ Li K, Gao P, Xiang P, Zhang X, Cui X, Ma LQ (February 2017). "Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks". Environment International. 99: 43–54. doi:10.1016/j.envint.2016.11.014. PMID 27871799.
  45. ^ Tonks DL (September 1994). "Percolation wave propagation, and void link-up effects in ductile fracture". Le Journal de Physique IV. 04 (C8): C8–665-C8-670. Bibcode:1994STIN...9511209T. doi:10.1051/jp4:19948101. ISSN 1155-4339. Archived from the original on June 25, 2021. Retrieved December 2, 2019.
  46. ^ أ ب Starling AP (2013). Perflourylalkyl substances in pregnancy and the risk of preeclampsia. University of North Carolina at Chapel Hill (Thesis). pp. 1–215. doi:10.17615/qhqh-4265.
  47. ^ أ ب "Agency for Toxic Substances and Disease Registry (ATSDR)", Health Care Policy and Politics a to Z, CQ Press, 2009, doi:10.4135/9781452240121.n18, ISBN 9780872897762 
  48. ^ Hu Y, Liu G, Rood J, Liang L, Bray GA, de Jonge L, et al. (December 2019). "Perfluoroalkyl substances and changes in bone mineral density: A prospective analysis in the POUNDS-LOST study". Environmental Research. 179 (Pt A): 108775. Bibcode:2019ER....179j8775H. doi:10.1016/j.envres.2019.108775. PMC 6905427. PMID 31593837.
  49. ^ Donauer S, Chen A, Xu Y, Calafat AM, Sjodin A, Yolton K (March 2015). "Prenatal exposure to polybrominated diphenyl ethers and polyfluoroalkyl chemicals and infant neurobehavior". The Journal of Pediatrics. 166 (3): 736–42. doi:10.1016/j.jpeds.2014.11.021. PMC 4344877. PMID 25524317.
  50. ^ Calafat AM, Wong LY, Kuklenyik Z, Reidy JA, Needham LL (November 2007). "Polyfluoroalkyl chemicals in the U.S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 and comparisons with NHANES 1999-2000". Environmental Health Perspectives. 115 (11): 1596–602. doi:10.1289/ehp.10598. PMC 2072821. PMID 18007991.
  51. ^ Wang Z, Cousins IT, Berger U, Hungerbühler K, Scheringer M (2016). "Comparative assessment of the environmental hazards of and exposure to perfluoroalkyl phosphonic and phosphinic acids (PFPAs and PFPiAs): Current knowledge, gaps, challenges and research needs". Environment International. 89–90: 235–47. doi:10.1016/j.envint.2016.01.023. PMID 26922149.[dead link]
  52. ^ Blum A, Balan SA, Scheringer M, Trier X, Goldenman G, Cousins IT, et al. (May 2015). "The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs)". Environmental Health Perspectives. 123 (5): A107-11. doi:10.1289/ehp.1509934. PMC 4421777. PMID 25932614.
  53. ^ "Stockholm Convention Clearing". chm.pops.int. Secretariat of the Stockholm Convention. Archived from the original on April 10, 2011. Retrieved 2016-10-26.
  54. ^ "Opinion | These toxic chemicals are everywhere — even in your body. And they won't ever go away". Washington Post. Archived from the original on May 9, 2019. Retrieved 2019-06-08.
  55. ^ Turkewitz J (2019-02-22). "Toxic 'Forever Chemicals' in Drinking Water Leave Military Families Reeling". The New York Times. ISSN 0362-4331. Archived from the original on June 8, 2019. Retrieved 2019-06-08.
  56. ^ Kounang N (June 3, 2019). "FDA confirms PFAS chemicals are in the US food supply". CNN. Archived from the original on June 8, 2019. Retrieved 2019-06-08.
  57. ^ "Critics say EPA action plan on toxic 'forever chemicals' falls short". The Washington Post. February 14, 2019. Archived from the original on June 8, 2019. Retrieved June 8, 2019.
  58. ^ "Companies deny responsibility for toxic 'forever chemicals' contamination". The Guardian. 2019. Archived from the original on September 11, 2019.
  59. ^ Wang Z, Cousins IT, Scheringer M, Hungerbuehler K (February 2015). "Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: status quo, ongoing challenges and possible solutions". Environment International. 75: 172–179. doi:10.1016/j.envint.2014.11.013. PMID 25461427.
  60. ^ Birnbaum LS, Grandjean P (May 2015). "Alternatives to PFASs: perspectives on the science". Environmental Health Perspectives. 123 (5): A104-5. doi:10.1289/ehp.1509944. PMC 4421778. PMID 25932670.
  61. ^ Perry MJ, Nguyen GN, Porter ND (2016). "The Current Epidemiologic Evidence on Exposures to Poly- and Perfluoroalkyl Substances (PFASs) and Male Reproductive Health". Current Epidemiology Reports. 3 (1): 19–26. doi:10.1007/s40471-016-0071-y. ISSN 2196-2995. S2CID 88276945.
  62. ^ Scheringer M, Trier X, Cousins IT, de Voogt P, Fletcher T, Wang Z, Webster TF (November 2014). "Helsingør statement on poly- and perfluorinated alkyl substances (PFASs)". Chemosphere. 114: 337–9. Bibcode:2014Chmsp.114..337S. doi:10.1016/j.chemosphere.2014.05.044. PMID 24938172.
  63. ^ "The "forever chemicals" that are harming our health: PFAS". Health and Environment Alliance (in الإنجليزية البريطانية). 2020-02-04. Archived from the original on 2020-02-06. Retrieved 2020-03-06.
  64. ^ Thomaidi VS, Tsahouridou A, Matsoukas C, Stasinakis AS, Petreas M, Kalantzi OI (April 2020). "Risk assessment of PFASs in drinking water using a probabilistic risk quotient methodology". The Science of the Total Environment. 712: 136485. Bibcode:2020ScTEn.712m6485T. doi:10.1016/j.scitotenv.2019.136485. PMID 31927447. S2CID 210167277.
  65. ^ Arvaniti OS, Stasinakis AS (August 2015). "Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment". The Science of the Total Environment. 524–525: 81–92. Bibcode:2015ScTEn.524...81A. doi:10.1016/j.scitotenv.2015.04.023. PMID 25889547.
  66. ^ Nika MC, Ntaiou K, Elytis K, Thomaidi VS, Gatidou G, Kalantzi OI, et al. (July 2020). "Wide-scope target analysis of emerging contaminants in landfill leachates and risk assessment using Risk Quotient methodology". Journal of Hazardous Materials. 394: 122493. doi:10.1016/j.jhazmat.2020.122493. PMID 32240898. S2CID 214766390.
  67. ^ Perkins T (18 December 2021). "PFAS 'forever chemicals' constantly cycle through ground, air and water, study finds". The Guardian.
  68. ^ Sha B, Johansson JH, Tunved P, Bohlin-Nizzetto P, Cousins IT, Salter ME (January 2022). "Sea Spray Aerosol (SSA) as a Source of Perfluoroalkyl Acids (PFAAs) to the Atmosphere: Field Evidence from Long-Term Air Monitoring". Environmental Science & Technology. American Chemical Society (ACS). 56 (1): 228–238. Bibcode:2022EnST...56..228S. doi:10.1021/acs.est.1c04277. PMC 8733926. PMID 34907779.
  69. ^ أ ب Jones PD, Hu W, De Coen W, Newsted JL, Giesy JP (November 2003). "Binding of perfluorinated fatty acids to serum proteins". Environmental Toxicology and Chemistry. 22 (11): 2639–2649. doi:10.1897/02-553. PMID 14587903. S2CID 15768654.
  70. ^ Martin JW, Mabury SA, Solomon KR, Muir DC (January 2003). "Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss)". Environmental Toxicology and Chemistry. 22 (1): 196–204. doi:10.1002/etc.5620220126. PMID 12503765. S2CID 12659454.
  71. ^ Choi S, Kim JJ, Kim MH, Joo YS, Chung MS, Kho Y, Lee KW (June 2020). "Origin and organ-specific bioaccumulation pattern of perfluorinated alkyl substances in crabs". Environmental Pollution. 261: 114185. doi:10.1016/j.envpol.2020.114185. PMID 32114125. S2CID 211727091.
  72. ^ أ ب Fair PA, Wolf B, White ND, Arnott SA, Kannan K, Karthikraj R, Vena JE (April 2019). "Perfluoroalkyl substances (PFASs) in edible fish species from Charleston Harbor and tributaries, South Carolina, United States: Exposure and risk assessment". Environmental Research. 171: 266–277. Bibcode:2019ER....171..266F. doi:10.1016/j.envres.2019.01.021. PMC 6943835. PMID 30703622.
  73. ^ Teunen L, Bervoets L, Belpaire C, De Jonge M, Groffen T (2021-03-29). "PFAS accumulation in indigenous and translocated aquatic organisms from Belgium, with translation to human and ecological health risk". Environmental Sciences Europe. 33 (1): 39. doi:10.1186/s12302-021-00477-z. ISSN 2190-4715. S2CID 232414650.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  74. ^ Taylor MD, Beyer-Robson J, Johnson DD, Knott NA, Bowles KC (June 2018). "Bioaccumulation of perfluoroalkyl substances in exploited fish and crustaceans: Spatial trends across two estuarine systems". Marine Pollution Bulletin. 131 (Pt A): 303–313. doi:10.1016/j.marpolbul.2018.04.029. PMID 29886951. S2CID 47009972.
  75. ^ Sun JM, Kelly BC, Gobas FA, Sunderland EM (August 2022). "A food web bioaccumulation model for the accumulation of per- and polyfluoroalkyl substances (PFAS) in fish: how important is renal elimination?". Environmental Science. Processes & Impacts. 24 (8): 1152–1164. doi:10.1039/D2EM00047D. PMC 9384792. PMID 35678632.
  76. ^ "DuPont settles lawsuits over leak of chemical used to make Teflon". Reuters. 2017-02-13. Archived from the original on June 8, 2019. Retrieved 2019-06-08.
  77. ^ "C8 Science Panel Website". www.c8sciencepanel.org. Archived from the original on April 14, 2013. Retrieved 2019-06-08.
  78. ^ Lerner S (October 6, 2018). "Nationwide class action lawsuit targets Dupont, Chemours, 3M, and other makers of PFAS chemicals". The Intercept. Archived from the original on October 7, 2018. Retrieved October 8, 2018.
  79. ^ Piña C (30 November 2019). "'Dark Waters': 7 of the Film's Stars and Their Real-Life Inspirations". The Hollywood Reporter. Retrieved 10 May 2022.
  80. ^ Lerner S (2018-07-31). "3M Knew about The Dangers of PFOA and PFOS Decades Ago, Internal Documents Show". The Intercept. First Look Media Works, Inc. Archived from the original on June 23, 2021. Retrieved May 2, 2020.
  81. ^ Halpern M (2018-05-16). "Bipartisan Outrage as EPA, White House Try to Cover Up Chemical Health Assessment". Cambridge, MA: Union of Concerned Scientists. Archived from the original on March 5, 2020. Retrieved May 2, 2020.
  82. ^ Snider A (2018-05-14). "White House, EPA headed off chemical pollution study". Politico. Archived from the original on May 16, 2018. Retrieved May 2, 2020.
  83. ^ "DoD: At Least 126 Bases Report Water Contaminants Linked to Cancer, Birth Defects". Military Times. 26 April 2018. Archived from the original on May 6, 2020.
  84. ^ Sullivan M (March 2018). "Addressing Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA)" (PDF).
  85. ^ The Guardian (UK), 23 Dec. 2022, "US Military ‘Downplayed’ The Number of Soldiers Exposed to ‘Forever Chemicals’--Analysis of Pentagon Report Reveals that Soldiers Exposed to PFAS Pollution at Much Higher Rate than Military Claims"
  86. ^ Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, et al. (October 2020). "An overview of the uses of per- and polyfluoroalkyl substances (PFAS)". Environmental Science. Processes & Impacts. 22 (12): 2345–2373. doi:10.1039/D0EM00291G. PMC 7784712. PMID 33125022.
  87. ^ Peaslee GF, Wilkinson JT, McGuinness SR, Tighe M, Caterisano N, Lee S, et al. (2020-08-11). "Another Pathway for Firefighter Exposure to Per- and Polyfluoroalkyl Substances: Firefighter Textiles". Environmental Science & Technology Letters (in الإنجليزية). 7 (8): 594–599. doi:10.1021/acs.estlett.0c00410. ISSN 2328-8930. S2CID 220481982. Archived from the original on October 20, 2020. Retrieved November 10, 2020.
  88. ^ أ ب ت ث Nilsson H, Kärrman A, Westberg H, Rotander A, van Bavel B, Lindström G (March 2010). "A time trend study of significantly elevated perfluorocarboxylate levels in humans after using fluorinated ski wax". Environmental Science & Technology. 44 (6): 2150–5. Bibcode:2010EnST...44.2150N. doi:10.1021/es9034733. PMID 20158198.
  89. ^ أ ب ت Rotander A, Toms LM, Aylward L, Kay M, Mueller JF (September 2015). "Elevated levels of PFOS and PFHxS in firefighters exposed to aqueous film forming foam (AFFF)". Environment International. 82: 28–34. doi:10.1016/j.envint.2015.05.005. PMID 26001497.
  90. ^ Trowbridge J, Gerona RR, Lin T, Rudel RA, Bessonneau V, Buren H, Morello-Frosch R (March 2020). "Exposure to Perfluoroalkyl Substances in a Cohort of Women Firefighters and Office Workers in San Francisco". Environmental Science & Technology. 54 (6): 3363–3374. Bibcode:2020EnST...54.3363T. doi:10.1021/acs.est.9b05490. PMC 7244264. PMID 32100527.
  91. ^ Tanner EM, Bloom MS, Wu Q, Kannan K, Yucel RM, Shrestha S, Fitzgerald EF (February 2018). "Occupational exposure to perfluoroalkyl substances and serum levels of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in an aging population from upstate New York: a retrospective cohort study". International Archives of Occupational and Environmental Health. 91 (2): 145–154. doi:10.1007/s00420-017-1267-2. PMID 29027000. S2CID 3950077. Archived from the original on October 6, 2021. Retrieved November 10, 2020.
  92. ^ Fromme H, Tittlemier SA, Völkel W, Wilhelm M, Twardella D (May 2009). "Perfluorinated compounds--exposure assessment for the general population in Western countries". International Journal of Hygiene and Environmental Health. 212 (3): 239–70. doi:10.1016/j.ijheh.2008.04.007. PMID 18565792. Archived from the original on August 21, 2020. Retrieved November 10, 2020.
  93. ^ Kärrman A, Harada KH, Inoue K, Takasuga T, Ohi E, Koizumi A (May 2009). "Relationship between dietary exposure and serum perfluorochemical (PFC) levels--a case study". Environment International. 35 (4): 712–7. doi:10.1016/j.envint.2009.01.010. PMID 19250678. Archived from the original on June 15, 2018. Retrieved November 10, 2020.
  94. ^ أ ب ت Costa G, Sartori S, Consonni D (March 2009). "Thirty years of medical surveillance in perfluooctanoic acid production workers". Journal of Occupational and Environmental Medicine. 51 (3): 364–72. doi:10.1097/JOM.0b013e3181965d80. PMID 19225424. S2CID 34813716. Archived from the original on October 6, 2021. Retrieved January 21, 2021.
  95. ^ Olsen GW, Burris JM, Burlew MM, Mandel JH (November 2000). "Plasma cholecystokinin and hepatic enzymes, cholesterol and lipoproteins in ammonium perfluorooctanoate production workers". Drug and Chemical Toxicology. 23 (4): 603–20. doi:10.1081/DCT-100101973. PMID 11071397. S2CID 30289350. Archived from the original on July 5, 2021. Retrieved November 29, 2020.
  96. ^ أ ب Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, Zobel LR (September 2007). "Half-life of serum elimination of perfluorooctanesulfonate,perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers". Environmental Health Perspectives. 115 (9): 1298–305. doi:10.1289/ehp.10009. PMC 1964923. PMID 17805419.
  97. ^ Olsen GW, Burris JM, Mandel JH, Zobel LR (September 1999). "Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees". Journal of Occupational and Environmental Medicine. 41 (9): 799–806. doi:10.1097/00043764-199909000-00012. PMID 10491796. Archived from the original on October 6, 2021. Retrieved January 21, 2021.
  98. ^ أ ب Olsen GW, Chang SC, Noker PE, Gorman GS, Ehresman DJ, Lieder PH, Butenhoff JL (February 2009). "A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and humans". Toxicology. 256 (1–2): 65–74. doi:10.1016/j.tox.2008.11.008. PMID 19059455. Archived from the original on September 27, 2020. Retrieved November 29, 2020.
  99. ^ Olsen GW, Ehresman DJ, Buehrer BD, Gibson BA, Butenhoff JL, Zobel LR (August 2012). "Longitudinal assessment of lipid and hepatic clinical parameters in workers involved with the demolition of perfluoroalkyl manufacturing facilities". Journal of Occupational and Environmental Medicine. 54 (8): 974–83. doi:10.1097/JOM.0b013e31825461d2. PMID 22842914. S2CID 11478469. Archived from the original on October 6, 2021. Retrieved January 21, 2021.
  100. ^ Olsen GW, Zobel LR (November 2007). "Assessment of lipid, hepatic, and thyroid parameters with serum perfluorooctanoate (PFOA) concentrations in fluorochemical production workers". International Archives of Occupational and Environmental Health. 81 (2): 231–46. doi:10.1007/s00420-007-0213-0. PMID 17605032. S2CID 25537444. Archived from the original on October 6, 2021. Retrieved November 29, 2020.
  101. ^ أ ب ت ث Sakr CJ, Kreckmann KH, Green JW, Gillies PJ, Reynolds JL, Leonard RC (October 2007). "Cross-sectional study of lipids and liver enzymes related to a serum biomarker of exposure (ammonium perfluorooctanoate or APFO) as part of a general health survey in a cohort of occupationally exposed workers". Journal of Occupational and Environmental Medicine. 49 (10): 1086–96. doi:10.1097/JOM.0b013e318156eca3. PMID 18000414. S2CID 20124680. Archived from the original on October 6, 2021. Retrieved January 21, 2021.
  102. ^ أ ب Sakr CJ, Leonard RC, Kreckmann KH, Slade MD, Cullen MR (August 2007). "Longitudinal study of serum lipids and liver enzymes in workers with occupational exposure to ammonium perfluorooctanoate". Journal of Occupational and Environmental Medicine. 49 (8): 872–9. doi:10.1097/JOM.0b013e318124a93f. PMID 17693785. S2CID 7339239. Archived from the original on October 6, 2021. Retrieved January 21, 2021.
  103. ^ Sakr CJ, Symons JM, Kreckmann KH, Leonard RC (October 2009). "Ischaemic heart disease mortality study among workers with occupational exposure to ammonium perfluorooctanoate". Occupational and Environmental Medicine. 66 (10): 699–703. doi:10.1136/oem.2008.041582. PMID 19553230. S2CID 30652104. Archived from the original on October 6, 2021. Retrieved November 29, 2020.
  104. ^ أ ب Steenland K, Zhao L, Winquist A (May 2015). "A cohort incidence study of workers exposed to perfluorooctanoic acid (PFOA)". Occupational and Environmental Medicine. 72 (5): 373–80. doi:10.1136/oemed-2014-102364. PMID 25601914. S2CID 28440634. Archived from the original on October 6, 2021. Retrieved November 29, 2020.
  105. ^ Olsen GW, Gilliland FD, Burlew MM, Burris JM, Mandel JS, Mandel JH (July 1998). "An epidemiologic investigation of reproductive hormones in men with occupational exposure to perfluorooctanoic acid". Journal of Occupational and Environmental Medicine. 40 (7): 614–22. doi:10.1097/00043764-199807000-00006. PMID 9675720. Archived from the original on October 6, 2021. Retrieved January 21, 2021.
  106. ^ Olsen GW, Church TR, Miller JP, Burris JM, Hansen KJ, Lundberg JK, et al. (December 2003). "Perfluorooctanesulfonate and other fluorochemicals in the serum of American Red Cross adult blood donors". Environmental Health Perspectives. 111 (16): 1892–901. doi:10.1289/ehp.6316. PMC 1241763. PMID 14644663.
  107. ^ Olsen GW, Church TR, Larson EB, van Belle G, Lundberg JK, Hansen KJ, et al. (March 2004). "Serum concentrations of perfluorooctanesulfonate and other fluorochemicals in an elderly population from Seattle, Washington". Chemosphere. 54 (11): 1599–611. Bibcode:2004Chmsp..54.1599O. doi:10.1016/j.chemosphere.2003.09.025. PMID 14675839. Archived from the original on June 14, 2018. Retrieved November 29, 2020.
  108. ^ Olsen GW, Church TR, Hansen KJ, Burris JM, Butenhoff JL, Mandel JH, Zobel LR (2004-01-01). "Quantitative Evaluation of Perfluorooctanesulfonate (PFOS) and Other Fluorochemicals in the Serum of Children". Journal of Children's Health. 2 (1): 53–76. doi:10.3109/15417060490447378. ISSN 1541-7069.
  109. ^ Olsen GW, Huang HY, Helzlsouer KJ, Hansen KJ, Butenhoff JL, Mandel JH (May 2005). "Historical comparison of perfluorooctanesulfonate, perfluorooctanoate, and other fluorochemicals in human blood". Environmental Health Perspectives. 113 (5): 539–45. doi:10.1289/ehp.7544. PMC 1257544. PMID 15866760.
  110. ^ Kubwabo C, Vais N, Benoit FM (June 2004). "A pilot study on the determination of perfluorooctanesulfonate and other perfluorinated compounds in blood of Canadians". Journal of Environmental Monitoring. 6 (6): 540–5. doi:10.1039/b314085g. PMID 15173906. Archived from the original on October 6, 2021. Retrieved November 29, 2020.
  111. ^ Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, et al. (September 2004). "Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries". Environmental Science & Technology. 38 (17): 4489–95. Bibcode:2004EnST...38.4489K. doi:10.1021/es0493446. PMID 15461154. Archived from the original on February 4, 2021. Retrieved November 29, 2020.
  112. ^ Harada K, Saito N, Inoue K, Yoshinaga T, Watanabe T, Sasaki S, et al. (March 2004). "The influence of time, sex and geographic factors on levels of perfluorooctane sulfonate and perfluorooctanoate in human serum over the last 25 years". Journal of Occupational Health. 46 (2): 141–7. doi:10.1539/joh.46.141. PMID 15090689. S2CID 9418835. Archived from the original on June 25, 2021. Retrieved November 29, 2020.
  113. ^ Fu J, Gao Y, Cui L, Wang T, Liang Y, Qu G, et al. (December 2016). "Occurrence, temporal trends, and half-lives of perfluoroalkyl acids (PFAAs) in occupational workers in China". Scientific Reports. 6 (1): 38039. Bibcode:2016NatSR...638039F. doi:10.1038/srep38039. PMC 5131319. PMID 27905562.
  114. ^ Fu J, Gao Y, Wang T, Liang Y, Zhang A, Wang Y, Jiang G (March 2015). "Elevated levels of perfluoroalkyl acids in family members of occupationally exposed workers: the importance of dust transfer". Scientific Reports. 5 (1): 9313. Bibcode:2015NatSR...5E9313F. doi:10.1038/srep09313. PMC 5380130. PMID 25791573.
  115. ^ Gao Y, Fu J, Cao H, Wang Y, Zhang A, Liang Y, et al. (June 2015). "Differential accumulation and elimination behavior of perfluoroalkyl Acid isomers in occupational workers in a manufactory in China". Environmental Science & Technology. 49 (11): 6953–62. Bibcode:2015EnST...49.6953G. doi:10.1021/acs.est.5b00778. PMID 25927957. S2CID 23947500. Archived from the original on October 6, 2021. Retrieved December 2, 2019.
  116. ^ Lu Y, Gao K, Li X, Tang Z, Xiang L, Zhao H, et al. (August 2019). "Mass Spectrometry-Based Metabolomics Reveals Occupational Exposure to Per- and Polyfluoroalkyl Substances Relates to Oxidative Stress, Fatty Acid β-Oxidation Disorder, and Kidney Injury in a Manufactory in China". Environmental Science & Technology. 53 (16): 9800–9809. Bibcode:2019EnST...53.9800L. doi:10.1021/acs.est.9b01608. PMID 31246438. S2CID 195762433.
  117. ^ Wang Y, Fu J, Wang T, Liang Y, Pan Y, Cai Y, Jiang G (November 2010). "Distribution of perfluorooctane sulfonate and other perfluorochemicals in the ambient environment around a manufacturing facility in China". Environmental Science & Technology. 44 (21): 8062–7. Bibcode:2010EnST...44.8062W. doi:10.1021/es101810h. PMID 20879709. Archived from the original on June 25, 2021. Retrieved January 21, 2021.
  118. ^ أ ب Laitinen JA, Koponen J, Koikkalainen J, Kiviranta H (December 2014). "Firefighters' exposure to perfluoroalkyl acids and 2-butoxyethanol present in firefighting foams". Toxicology Letters. 231 (2): 227–32. doi:10.1016/j.toxlet.2014.09.007. PMID 25447453.
  119. ^ Jin C, Sun Y, Islam A, Qian Y, Ducatman A (March 2011). "Perfluoroalkyl acids including perfluorooctane sulfonate and perfluorohexane sulfonate in firefighters". Journal of Occupational and Environmental Medicine. 53 (3): 324–8. doi:10.1097/jom.0b013e31820d1314. PMID 21346631. S2CID 41993931.
  120. ^ Barton KE, Starling AP, Higgins CP, McDonough CA, Calafat AM, Adgate JL (January 2020). "Sociodemographic and behavioral determinants of serum concentrations of per- and polyfluoroalkyl substances in a community highly exposed to aqueous film-forming foam contaminants in drinking water". International Journal of Hygiene and Environmental Health. 223 (1): 256–266. doi:10.1016/j.ijheh.2019.07.012. PMC 6878185. PMID 31444118.
  121. ^ Colorado economic impact study on the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993. 1993-11-12. doi:10.2172/10112187. Archived from the original. You must specify the date the archive was made using the |archivedate= parameter. https://digital.library.unt.edu/ark:/67531/metadc1279934/. Retrieved on December 2, 2019. 
  122. ^ "Toxics in firefighting". ecology.wa.gov. Retrieved 2022-01-14.{{cite web}}: CS1 maint: url-status (link)
  123. ^ أ ب ت Tao L, Kannan K, Aldous KM, Mauer MP, Eadon GA (May 2008). "Biomonitoring of perfluorochemicals in plasma of New York State personnel responding to the World Trade Center disaster". Environmental Science & Technology. 42 (9): 3472–8. Bibcode:2008EnST...42.3472T. doi:10.1021/es8000079. PMID 18522136. Archived from the original on October 6, 2021. Retrieved December 2, 2019.
  124. ^ "Treatment Technologies". PFAS — Per- and Polyfluoroalkyl Substances. Washington, DC: Interstate Technology & Regulatory Council (ITRC). September 2020. Archived from the original on March 27, 2021. Retrieved March 27, 2021.
  125. ^ أ ب Fischer L (January 31, 2022). "How to Destroy 'Forever Chemicals'". Scientific American.
  126. ^ "PFAS Assessment & Mitigation". Columbus, OH: Battelle Memorial Institute. Archived from the original on December 18, 2018. Retrieved 2018-12-18.
  127. ^ أ ب Cameron L (9 October 2018). "Diamond technology cleans up PFAS-contaminated wastewater". MSU Today. Michigan State University. Archived from the original on 19 December 2018. Retrieved 2018-12-18.
  128. ^ Mandelbaum RF (2019-09-18). "A New Jersey Soil Bacteria Is First to Break Down Toxic 'Forever Chemical'". Gizmodo. Archived from the original on September 20, 2019. Retrieved 2019-09-19.
  129. ^ Lim XZ. "Can microbes save us from PFAS?". cen.acs.org.
  130. ^ Trang B, Li Y, Xue XS, Ateia M, Houk KN, Dichtel WR (August 2022). "Low-temperature mineralization of perfluorocarboxylic acids". Science. 377 (6608): 839–845. Bibcode:2022Sci...377..839T. doi:10.1126/science.abm8868. PMID 35981038.
  131. ^ Abbas M, Maceda AM, Firouzi HR, Xiao Z, Arman HD, Shi Y, et al. (December 2022). "Fluorine extraction from organofluorine molecules to make fluorinated clusters in yttrium MOFs". Chemical Science. 13 (48): 14285–14291. doi:10.1039/D2SC05143E. PMC 9749115. PMID 36545134.
  132. ^ Wen Y, Rentería-Gómez Á, Day GS, Smith MF, Yan TH, Ozdemir RO, et al. (July 2022). "Integrated Photocatalytic Reduction and Oxidation of Perfluorooctanoic Acid by Metal-Organic Frameworks: Key Insights into the Degradation Mechanisms". Journal of the American Chemical Society. 144 (26): 11840–11850. doi:10.1021/jacs.2c04341. PMID 35732040. S2CID 249956841.
  133. ^ "Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS): Frequently Asked Questions" (PDF). Centers for Disease Control. August 22, 2017. Archived (PDF) from the original on October 18, 2020. Retrieved 13 August 2019.
  134. ^ "ORD subset of PFAS with ongoing work methods; CompTox Chemicals Dashboard" (PDF). EPA. 2019-03-11. Archived (PDF) from the original on July 15, 2019. Retrieved August 13, 2019.

قراءات إضافية

وصلات خارجية